1. A fair coin is flipped twice and it is known that at least one head is observed. What is the probability of getting two heads?
2. Given n indistinguishable particles and $m(>n)$ distinguishable boxes, we place at random each particle in one of the boxes. Find the probability that in n preselected boxes, one and only one particle will be found?
a. $n!/\left(m^{n}\right)$
b. $(m-1)$! n ! / $(m+n-1)$!
c. $1 /\left(m^{n}\right)$
d. $1 / \mathrm{m}$
e. None
3. Which of the following statements are true? (select all statements that are true)
a. If A and B are two rank 1 matrices then the rank of their sum $A+B$ can never be greater than 1.
b. Any rank 1 matrix $A_{m \times n}$ can always be written as $u v^{\top}$ where $u \epsilon$ R^{m} and $v \in R^{n}$.
c. If A and B are two rank-1 matrices then the rank of their product $A B$ can never be greater than 1.
d. If A is a $m \times p$ matrix and B is a $p \times n$ matrix then if $\operatorname{rank}(A) \leq p$ (always) and $\operatorname{rank}(B) \leq p$ (always) but the rank of $A B$ can be greater than p.
4. What value should we subtract from the diagonal of the given matrix, such that the determinant of the matrix is zero? \qquad

$$
A=\left[\begin{array}{cccc}
0.1 & 0.15 & 0.35 & 0.4 \\
0.2 & 0 & 0.45 & 0.35 \\
0.1 & 0.7 & 0.1 & 0.1 \\
0.3 & 0.1 & 0.5 & 0.1
\end{array}\right]
$$

5. X is a uniform distribution random variable with support in [-2, 2] U [99.5, 100.5]. The mean of \boldsymbol{X} is \qquad
6. Consider the matrix \mathbf{X} whose eigenvalues are 1, -1 and 3 . Then Trace of $\mathbf{X}^{3}-3 \mathbf{X}^{2}$ is \qquad
7. A new test has been developed to determine whether a given student is overstressed. This test is 95% accurate if the student is not overstressed, but only 75% accurate if the student is overstressed. It is known that 40% of all students are over-stressed. Given that a particular student tests negative for stress, what is the probability that the test result is correct? \qquad
8. If A is an $m \times n$ matrix, find $\operatorname{dim}(R(A))+\operatorname{dim}(C(A))+\operatorname{dim}(N(A))+$ $\operatorname{dim}\left(N\left(A^{\top}\right)\right)$,
where $R($.$) is defined as the row space of the matrix,$
$\mathrm{C}($.$) is defined as the column space of the matrix,$
$N($.$) is defined as null space of the matrix,$
a. $m+n$
b. $2(m+n)$
c. $m n$
d. $m n+m+n$
e. None
9. Calculate $\frac{d y}{d x}$, if

$$
\begin{aligned}
& z=x^{2}+x^{3}+\sqrt{1-x^{2}} \\
& 4 z=e^{-2 y}+2 \sin y
\end{aligned}
$$

a. $y\left(2 x+3 x^{2}-\frac{x}{\sqrt{1-x^{2}}}\right)$
b. $\frac{2 x+3 x^{2}+\frac{x}{\sqrt{1-x^{2}}}}{e^{-2 y}+2 \cos y}$
c. $\frac{4 x+6 x^{2}-\frac{2 x}{\sqrt{1-x^{2}}}}{-e^{-2 y}+\cos y}$
d. $\frac{2 x+3 x^{2}-\frac{x}{\sqrt{1-x^{2}}}}{-2 e^{-2 y}+2 \cos y}$
10. Consider a differential equation $\frac{d y}{d t}=k t$, with $y(0)=3, \frac{d y(0)}{d t}=2$ then, $y(t) i s$
a. $3 e^{1.5 t}$
b. $3 e^{2 t / 3}$
c. $2 e^{1.5 t}$
d. $2 e^{2 t / 3}$
11. Consider the following joint distribution of random variables X and Y :

$$
\begin{aligned}
& f(x, y)=x\left(1+3 y^{2}\right) / 4 ; \quad 0<x<2,0<y<1 \\
& f(x, y)=0 ; \quad \text { otherwise }
\end{aligned}
$$

The marginal distribution of X is
a. $x / 4$
b. $y / 4$
c. $x / 2$
d. $\mathrm{y} / 6$
12. Solve $\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt{x+4}-2}\right)$.
13. Find the minima of the function $y(x)$

$$
\frac{d y}{d x}=2 x-e^{-3 x}-x^{2}-1
$$

a. $-e^{-3}$
b. e^{-3}
c. -3
d. does not exist
e. None
14. Seats for Engineering, Medical and Arts in the university are in the ratio $5: 7: 8$. There is a proposal to increase these seats by $40 \%, 50 \%$ and 75% respectively. What will be the ratio of increased seats?
a. $2: 3: 4$
b. $4: 7: 12$
c. $6: 8: 9$
d. None
15. Consider the matrix $P=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\end{array}\right]$

Which of the following statements are correct?
a. Determinant of P is 1 .
b. P is orthogonal
c. Inverse of P is equal to its transpose.
d. All eigen values of P are real numbers.
16. Two very famous sportsmen Hardik and Krunal happened to be brothers, and played for country K. Hardik teased Shubman, an opponent from country E, "There is no way you are good enough to play for your country." Shubman replied, "Maybe not, but at least I am the best player in my own family."

Which one of the following can be inferred from this conversation?
a. Hardik was known to play better than Shubman.
b. Krunal was known to play better than Hardik.
c. Shubman and Krunal are good friends.
d. Shubman played better than Krunal.
17. Trucks (10 m long) and cars (5 m long) go on single lane bridge. There must be a gap of at least 25 m after each truck and a gap of 20 m after each car. Trucks and cars travel at a speed of $48 \mathrm{~km} / \mathrm{hr}$. If cars and trucks go
alternatively, what is the maximum number of vehicles that can use the bridge in one hour?
a. 800
b. 960
c. 1400
d. 1600
18. Identify all linear regression models, where α_{i} and β are model parameters and x_{i} are variables.
a. $y=\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]^{T}\left[\begin{array}{c}x_{1}^{2} \\ 1 / x_{2} \\ x_{3} x_{2}\end{array}\right]+\beta+1$
b.

$$
y=\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{1}^{2}
\end{array}\right]^{T}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\beta
$$

c. $y=\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \alpha_{2}\end{array}\right]^{T}\left[\begin{array}{c}x_{1}^{2} \\ x_{2} \\ x_{3} x_{2}\end{array}\right]+\beta+1$
d. $y=\left[\begin{array}{c}1 / \alpha_{1} \\ 1 / \alpha_{2} \\ 1 / \alpha_{3}\end{array}\right]^{T}\left[\begin{array}{c}x_{1}^{2} \\ x_{2} \\ x_{3} x_{2}\end{array}\right]+\beta+1$
19. The following are the set of data points (x, y) collected in an experiment:

$$
(1,2),(\sqrt{2}, 4),(\sqrt{3}, 6)
$$

The model $y=m x^{2}$ is proposed to be fitted
to the data points. The value of m is
a. 3
b. 1
c. 4
d. 2
20. Consider the following 3×3 matrix \mathbf{A}.

Mark all the ordered pair (x, y) for which $\operatorname{det}(A)=0$ is

$$
A=\left[\begin{array}{lll}
x & y & 6 \\
4 & 4 & 6 \\
1 & 2 & 3
\end{array}\right]
$$

a. $(2,4)$
b. $(3,4)$
c. $(1,2)$
d. $(4,4)$

