Stochastic PDEs involving a bilaplacian operator

Suprio Bhar, Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, India.

> Department of Mathematics, IIT Madras

> > June 4, 2024

This talk is based on a joint work with Barun Sarkar (arXiv:2312.16550v1)

メロト メロト メヨト メヨト

Bilaplacian operator appears in many physical models:

- Membrane models^{1 2}
- Sandpiles model³

¹Noemi Kurt, *Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension*, Ann. Probab., 37(2):687–725, 2009.

²Alessandra Cipriani, Biltu Dan, and Rajat Subhra Hazra, *The scaling limit of the membrane model* Ann. Probab., 47(6):3963–4001, 2019.

³Alessandra Cipriani, Rajat Subhra Hazra, and Wioletta M. Ruszel, *Scaling limit of the odometer in divisible sandpiles*. Probab. Theory Related Fields, 172(3-4):829–868, 2018.

Let S be the space of rapidly decreasing smooth functions on \mathbb{R} , with the dual space S', the space of tempered distributions.

Given a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ satisfying the usual conditions and a 2-dimensional standard Brownian motion $\{B_t\}_{t\geq 0}$, we are interested in the existence and uniqueness of strong solutions of the Stochastic PDE (SPDE) in \mathcal{S}' :

$$dX_t = L(X_t) dt + A(X_t) \cdot dB_t, t \ge 0; \quad X_0 = \Psi, \tag{1}$$

and the associated PDE in \mathcal{S}' :

$$\frac{\partial}{\partial t}u_t = L(u_t), t \ge 0; \quad u_0 = \Psi, \tag{2}$$

イロト イヨト イヨト イヨト

where $\Psi \in \mathcal{S}'$ and

 $L: S' \to S', A: S' \to S' \times S'$ are linear differential operators defined as follows:

$$\mathcal{L}(\phi) := -\frac{\kappa^2}{2} \,\partial^4 \,\phi + \frac{\sigma^2}{2} \,\partial^2 \,\phi - b \,\partial \,\phi, \tag{3}$$

and $A(\phi) := (A_1(\phi), A_2(\phi))$, with $A_1, A_2 : \mathcal{S}' \to \mathcal{S}'$, such that

$$A_1(\phi) := -\sigma \partial \phi, \quad A_2(\phi) := \kappa \partial^2 \phi,$$
 (4)

with κ, σ, b being real constants. We write $AX_t \cdot dB_t = A_1X_t dB_t^1 + A_2X_t dB_t^2$.

- Tempered Distributions and Hermite-Sobolev Spaces
- 2 A Monotonicity inequality for the pair (L, A)
- Existence and uniqueness of Strong solutions to the Stochastic PDE
- Applications to PDEs

1 Tempered Distributions and Hermite-Sobolev Spaces

2 A Monotonicity inequality for the pair (L, A)

3 Existence and uniqueness of Strong solutions to the Stochastic PDE

Applications to PDEs

Tempered Distributions

- Let S denote the space of real valued rapidly decreasing smooth functions on \mathbb{R} (Schwartz class) with dual S', the space of tempered distributions.
- For $p \in \mathbb{R}$, consider the increasing norms $\|\cdot\|_p$, defined by the inner products

$$\langle f,g
angle_{p}:=\sum_{k=0}^{\infty}(2k+1)^{2p}\langle f,h_{k}
angle\langle g,h_{k}
angle,\quad f,g\in\mathcal{S}.$$

Here, $\{h_k\}_{k=0}^{\infty}$ is an orthonormal basis for $\mathcal{L}^2(\mathbb{R}, dx)$ given by Hermite functions $h_k(t) := (2^k k! \sqrt{\pi})^{-1/2} \exp\{-t^2/2\} H_k(t), t \in \mathbb{R}$, where H_k are the Hermite polynomials.

イロト 不得 トイヨト イヨト

Hermite-Sobolev spaces

The Hermite-Sobolev spaces⁴ $S_p, p \in \mathbb{R}$ are defined to be the completion of S in $\|\cdot\|_p$. It can be shown that $(S_{-p}, \|\cdot\|_{-p})$ is isometrically isomorphic to the dual of $(S_p, \|\cdot\|_p)$ for $p \ge 0$.

Suprio Bhar, IIT Kanpur

⁴Kiyosi Itô, Foundations of stochastic differential equations in infinite-dimensional spaces, volume 47 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984.

A recursion for the derivative of Hermite functions

$$\partial h_n(x) = \sqrt{\frac{n}{2}} h_{n-1}(x) - \sqrt{\frac{n+1}{2}} h_{n+1}(x), \forall x \in \mathbb{R}, n = 0, 1, \cdots$$

Derivative operator

• Given a tempered distribution $\psi \in S'$, the distributional derivative of ψ is defined via the following relation

$$\langle \partial \psi, \phi \rangle := - \langle \psi, \partial \phi \rangle, \forall \phi \in \mathcal{S}.$$

- $\partial : S_p \to S_{p-\frac{1}{2}}$ is a bounded linear operator. So the Laplacian $\triangle = \partial^2$ is a bounded linear operator from S_p to S_{p-1} .
- $L: S_p \to S_{p-2}, A_1: S_p \to S_{p-\frac{1}{2}}$ and $A_2: S_p \to S_{p-1}$ are bounded linear operators.

イロト イヨト イヨト

Tempered Distributions and Hermite-Sobolev Spaces

2 A Monotonicity inequality for the pair (L, A)

3 Existence and uniqueness of Strong solutions to the Stochastic PDE

Applications to PDEs

イロト イヨト イヨト イヨト

Theorem (A Monotonicity inequality for the pair (*L*, *A*) (B., Sarkar)) Fix $p \in \mathbb{R}$. Then, there exists a constant $C = C(p, \kappa, \sigma, b) > 0$, such that $2 \langle \phi, L\phi \rangle_p + \|A\phi\|^2_{HS(p)} \leq C \|\phi\|^2_p, \forall \phi \in S,$ (5)

where $\|A\phi\|^2_{HS(p)} := \|A_1\phi\|^2_p + \|A_2\phi\|^2_p, \forall \phi \in S$. Moreover, by density arguments, the inequality is true for all $\phi \in S_{p+2}$.

イロト イヨト イヨト

A quick overview of known results

Remark

This inequality for Stochastic PDEs in Hilbert spaces was first considered in (Krylov and Rozovskii 1979)^a.

For second order L and first order A with constant coefficients, the inequality in the setting of Hermite-Sobolev spaces was first proved in (Gawarecki, Mandrekar and Rajeev 2009)^b

Some extensions of the above result, was proved in (Bhar and Rajeev 2015) and (Bhar, Bhaskaran and Sarkar 2020)

^aN. V. Krylov and B. L. Rozovskiĭ, *Stochastic evolution equations*. In *Current problems in mathematics, Vol. 14 (Russian)*, pages 71–147, 256. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979.

^bL. Gawarecki, V. Mandrekar, and B. Rajeev, *The monotonicity inequality for linear stochastic partial differential equations*. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12(4):575–591, 2009.

イロト イヨト イヨト

Remark (Integration by Parts) For $\phi \in S$, $(-\langle \phi, \partial^4 \phi \rangle_0 + \|\partial^2 \phi\|_0^2) = 0$ etc..

Idea of Proof

$$2 \langle \phi, L\phi \rangle_{p} + \|A\phi\|_{HS(p)}^{2} = \kappa^{2} \left(-\langle \phi, \partial^{4}\phi \rangle_{p} + \|\partial^{2}\phi\|_{p}^{2} \right) \\ + \left(\langle \phi, \sigma^{2} \partial^{2} \phi - 2b \partial \phi \rangle_{p} + \| - \sigma \partial \phi \|_{p}^{2} \right).$$

Write $\phi = \sum_{n=0}^{\infty} \phi_n h_n$ and expand the terms using the recurrence relation for the derivatives of Hermite functions.

イロト イヨト イヨト イヨト

- Tempered Distributions and Hermite-Sobolev Spaces
- 2 A Monotonicity inequality for the pair (L, A)
- Sexistence and uniqueness of Strong solutions to the Stochastic PDE
 - Applications to PDEs

Definition

Let $p \in \mathbb{R}$ and Ψ be an S_p -valued \mathcal{F}_0 measurable random variable. We say that an $(\mathcal{F}_t)_{t\geq 0}$ adapted S_p valued continuous process $\{X_t\}_t$ is a strong solution of the Stochastic PDE if it satisfies the equality

$$X_{t} = \Psi + \int_{0}^{t} L(X_{s}) \, ds + \int_{0}^{t} A(X_{s}) \cdot dB_{s}, t \ge 0 \tag{6}$$

in some S_q with $q \leq p$. In this case, we say that $\{X_t\}_t$ is an S_p valued strong solution with equality in S_q .

Theorem (B., Sarkar)

Let $p \in \mathbb{R}$ and Ψ be an S_p -valued \mathcal{F}_0 measurable random variable such that $\mathbb{E} \|\Psi\|_p^2 < \infty$. Then, there exists a unique S_p valued solution of the Stochastic PDE with equality in S_{p-2} .

Idea of Proof

Application of Theorem 1 from (Gawarecki, Mandrekar and Rajeev 2008)^a

^aL. Gawarecki, V. Mandrekar, and B. Rajeev, *Linear stochastic differential equations* in the dual of a multi-Hilbertian space. Theory Stoch. Process., 14(2):28–34, 2008. Supris Bhar, IT Kenpur

- Tempered Distributions and Hermite-Sobolev Spaces
- 2 A Monotonicity inequality for the pair (L, A)
- 3 Existence and uniqueness of Strong solutions to the Stochastic PDE

Applications to PDEs

イロト イヨト イヨト イヨ

Connections with PDEs

Consider the stochastic PDE in S_p :

$$X_t = \Psi + \int_0^t A(X_s). \, dB_s + \int_0^t L(X_s) \, ds, t \ge 0$$

with $\Psi \in \mathcal{S}_p$. Then,

$$\mathbb{E}X_t = \Psi + \int_0^t L(\mathbb{E}X_s) \, ds, t \ge 0$$

Remark

Our approach is motivated by (Rajeev and Thangavelu 2003)^a, where they show

$$\mathbb{E}(\delta_{B_t}) = \delta_0 + \int_0^t rac{1}{2} \partial^2 (\mathbb{E} \delta_{B_s}) \, ds, t \geq 0.$$

This yields the fundamental solution to the heat equation.

^aB. Rajeev and S. Thangavelu, *Probabilistic representations of solutions to the heat equation*. Proc. Indian Acad. Sci. Math. Sci., 113(3):321–332, 2003.

Definition

Let $p \in \mathbb{R}$ and $\Psi \in S_p$. We say that an S_p valued continuous $\{u_t\}_t$ is a strong solution of the PDE if it satisfies the equality

$$u_t = \Psi + \int_0^t L(u_s) \, ds, t \ge 0$$

in some S_q with $q \leq p$. In this case, we say that $\{u_t\}_t$ is an S_p valued strong solution of the PDE with equality in S_q .

Theorem (B., Sarkar)

Let $p \in \mathbb{R}$ and $\Psi \in S_p$. Then, there exists a unique S_p valued strong solution $\{u_t\}_t$ of the PDE with equality in S_{p-2} . Moreover, $u_t = \mathbb{E}X_t, \forall t \ge 0$, where $\{X_t\}_t$ is the strong solution of the Stochastic PDE.

Remark

The uniqueness follows from the Monotonicity inequality for (L, A).

< □ > < 同 > < 回 > < 回 >

(7)

Thank You

メロト メタト メヨト メヨト