Stochastic partial differential equations and invariant manifolds in embedded Hilbert spaces

Stefan Tappe

Albert Ludwig University of Freiburg, Germany University of Wuppertal, Germany

International Conference on stochastic calculus and applications to finance – with a focus towards Functional Itô calculus and Stochastic PDEs in distribution space IIT Madras, June 3rd, 2024

> Joint work with Rajeev Bhaskaran (IISER Thiruvanantapuram, India)

- **1** Invariant manifolds in finite dimensions
- ² Stochastic partial differential equations and invariant manifolds in embedded Hilbert spaces
- ³ Semilinear stochastic partial differential equations
- ⁴ Interplay between SPDEs and finite dimensional SDEs
- **6** Finite dimensional diffusions

Invariant manifolds in finite dimensions

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) [SPDEs and invariant manifolds in embedded Hilbert spaces](#page-0-0)

4 17 18

同 ▶ ィヨ ▶ ィヨ

 QQ

Stochastic differential equations

Consider the \mathbb{R}^d -valued SDE

$$
\begin{cases}\n dX_t = b(X_t)dt + \sigma(X_t)dW_t \\
 X_0 = x_0.\n\end{cases} (1)
$$

つくい

- Here $x_0 \in \mathbb{R}^d$ is the starting point.
- We consider measurable mappings

$$
b:\mathbb{R}^d\to\mathbb{R}^d\quad\text{and}\quad\sigma:\mathbb{R}^d\to\mathbb{R}^{d\times r}.
$$

 W is an \mathbb{R}^r -valued standard Wiener process.

Invariant manifolds

- Let $\mathcal M$ be an *m*-dimensional $\mathcal C^2$ -submanifold of $\mathbb R^d$ $(m\leq d).$
- \bullet M is called *locally invariant* for the SDE [\(1\)](#page-3-0) if for each $x_0 \in \mathcal{M}$ there exists a local weak solution (\mathbb{B}, W, X) with $X_0 = x_0$ such that $X^{\tau} \in \mathcal{M}$ for some stopping time $\tau > 0$.
- **•** Trajectory on an invariant submanifold:

Classical invariance result

Recall the \mathbb{R}^d -valued SDE

$$
\begin{cases}\ndX_t = b(X_t)dt + \sigma(X_t)dW_t \\
X_0 = x_0.\n\end{cases} \tag{2}
$$

つくい

We assume that $b\in C(\mathbb{R}^d;\mathbb{R}^d)$ and $\sigma\in C^1(\mathbb{R}^d;\mathbb{R}^{d\times r}).$

Theorem 1

 M is locally invariant for the SDE [\(2\)](#page-5-0) if and only if

$$
b(x) - \frac{1}{2} \sum_{j=1}^r D\sigma^j(x)\sigma^j(x) \in T_x \mathcal{M},
$$

$$
\sigma^1(x), \dots, \sigma^r(x) \in T_x \mathcal{M}
$$

for all $x \in M$.

Stochastic partial differential equations and invariant manifolds in embedded Hilbert spaces

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) [SPDEs and invariant manifolds in embedded Hilbert spaces](#page-0-0)

つくい

Normed spaces with continuous embedding

- Let $(G, \|\cdot\|_G)$ and $(H, \|\cdot\|_H)$ be normed spaces.
- Then we call (G, H) normed spaces with *continuous* embedding if:
	- \bigcirc We have $G \subset H$ as sets.
	- 2 The embedding operator Id : $(G, \|\cdot\|_G) \rightarrow (H, \|\cdot\|_H)$ is continuous; that is, there is a constant $K > 0$ such that

$$
||x||_H \leq K||x||_G \quad \text{for all } x \in G.
$$

 Ω

• In the sequel, we are interested in *continuous* mappings

$$
A:(G,\|\cdot\|_G)\to (H,\|\cdot\|_H).
$$

Stochastic partial differential equations

- \bullet Let (G, H) be continuously embedded separable Hilbert spaces.
- We consider the SPDE

$$
\begin{cases}\ndY_t = L(Y_t)dt + A(Y_t)dW_t \\
Y_0 = y_0.\n\end{cases}
$$

- Continuous coefficients $L: G \to H$ and $A: G \to \ell^2(H)$.
- Furthermore $W = (W^j)_{j \in \mathbb{N}}$ is an \mathbb{R}^∞ -Wiener process.
- A martingale solution Y is a G-valued adapted process on some stochastic basis $\mathbb B$ such that

$$
Y_t = y_0 + \underbrace{\int_0^t L(Y_s) ds}_{\text{in } (H, \|\cdot\|_H)} + \underbrace{\int_0^t A(Y_s) dW_s}_{\text{in } (H, \|\cdot\|_H)}, \quad t \in \mathbb{R}_+.
$$

Particular situations

• Semilinear SPDEs, where

$$
G:=\mathcal{D}(A),
$$

endowed with the graph norm

$$
||y||_G = \sqrt{||y||_H^2 + ||Ay||_H^2}, \quad y \in G.
$$

• SPDEs in Hermite Sobolev spaces with

$$
G:=\mathscr{S}_{p+1}(\mathbb{R}^d) \quad \text{and} \quad H:=\mathscr{S}_p(\mathbb{R}^d).
$$

 QQ

The submanifold

• Recall the general SPDE

$$
\begin{cases}\ndY_t = L(Y_t)dt + A(Y_t)dW_t \\
Y_0 = y_0.\n\end{cases} \tag{3}
$$

 200

- Let M be a (G, H) -submanifold of class C^2 :
	- **1** $\mathcal M$ is a $\mathcal C^2$ -submanifold of H .
	- 2 We have $M \subset G$.
	- **3** We have $\tau_H \cap \mathcal{M} = \tau_G \cap \mathcal{M}$.

• Let $\mathfrak{X}(\mathcal{M})$ be the space of all vector fields on \mathcal{M} ; that is

$$
A(y) \in T_y \mathcal{M} \quad \forall y \in \mathcal{M}.
$$

Theorem 2 – Bhaskaran & Tappe (2024)

 M is locally invariant for the SPDE [\(3\)](#page-10-0) if and only if

$$
A^{j}|_{\mathcal{M}} \in \mathfrak{X}(\mathcal{M}), \quad j \in \mathbb{N},
$$
\n
$$
[L|_{\mathcal{M}}]_{\mathfrak{X}(\mathcal{M})} - \frac{1}{2} \sum_{j=1}^{\infty} [A^{j}|_{\mathcal{M}}, A^{j}|_{\mathcal{M}}]_{\mathcal{M}} = [0]_{\mathfrak{X}(\mathcal{M})}.
$$
\n
$$
(5)
$$

- The equation [\(5\)](#page-11-0) is in the quotient space $\mathfrak{A}(\mathcal{M})/\mathfrak{X}(\mathcal{M})$.
- For $A, B \in \mathfrak{X}(\mathcal{M})$ the term $[A, B]_{\mathcal{M}}$ is locally given by

$$
y\mapsto D^2\phi(x)\big(D\phi(x)^{-1}A(y),D\phi(x)^{-1}B(y)\big),\quad y\in U\cap\mathcal{M},
$$

何 ▶ (三) (三)

 200

where $x := \phi^{-1}(y) \in V$.

Semilinear stochastic partial differential equations

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) [SPDEs and invariant manifolds in embedded Hilbert spaces](#page-0-0)

 QQ

④ 三 下

Semilinear SPDEs

• We consider the H-valued semilinear SPDE

$$
\begin{cases}\ndY_t = (AY_t + \alpha(Y_t))dt + \sigma(Y_t)dW_t \\
Y_0 = y_0.\n\end{cases} \tag{6}
$$

• Here $A : H \supset D(A) \rightarrow H$ is a densely defined, closed operator.

- A could be the generator of a C_0 -semigroup $(S_t)_{t\geq0}$ on H.
- Furthermore $\alpha : H \to H$ and $\sigma : H \to \ell^2(H)$ are continuous.
- A weak solution Y is an H-valued adapted process on some stochastic basis $\mathbb B$ such that for all $\zeta\in D(\mathcal A^*)$ we have

$$
\langle \zeta, Y_t \rangle_H = \langle \zeta, y_0 \rangle_H + \int_0^t \left(\langle A^* \zeta, Y_s \rangle_H + \langle \zeta, \alpha(Y_s) \rangle_H \right) ds + \int_0^t \langle \zeta, \sigma(Y_s) \rangle_H dW_s, \quad t \in \mathbb{R}_+.
$$

Continuous embeddings and the submanifold

• Consider the domain

$$
G:=\mathcal{D}(A),
$$

endowed with the graph norm

$$
||y||_G = \sqrt{||y||_H^2 + ||Ay||_H^2}, \quad y \in G.
$$

- \bullet (G, H) are continuously embedded separable Hilbert spaces.
- Moreover $A: (G, \|\cdot\|_G) \to (H, \|\cdot\|_H)$ is continuous.
- Let M be a C^2 -submanifold of H.

The invariance result

Proposition 1 – Bhaskaran & Tappe (2024)

The following statements are equivalent:

- \bullet M is locally invariant for the semilinear SPDE [\(6\)](#page-13-0).
- \bullet M is a (G, H) -submanifold, which is locally invariant for the continuously embedded SPDE [\(6\)](#page-13-0).
- \bullet M is a (G, H) -submanifold, and we have

$$
\sigma^j|_{\mathcal{M}} \in \mathfrak{X}(\mathcal{M}), \quad j \in \mathbb{N}, \tag{7}
$$

$$
[(A+\alpha)|_{\mathcal{M}}]_{\mathfrak{X}(\mathcal{M})}-\frac{1}{2}\sum_{j=1}^{\infty}[\sigma^j|_{\mathcal{M}},\sigma^j|_{\mathcal{M}}]=[0]_{\mathfrak{X}(\mathcal{M})}.
$$
 (8)

つくい

If σ is of class C^1 , then [\(8\)](#page-15-0) is equivalent to

$$
\mathcal{A}|_{\mathcal{M}} + \alpha|_{\mathcal{M}} - \frac{1}{2} \sum_{j=1}^{\infty} D \sigma^{j} \cdot \sigma^{j} |_{\mathcal{M}} \in \mathfrak{X}(\mathcal{M}).
$$

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) [SPDEs and invariant manifolds in embedded Hilbert spaces](#page-0-0)

- Let $k, l \in \mathbb{N}$ be such that:
	- \bullet ${\mathcal M}$ is a $\mathsf C^k$ -submanifold of $H.$ $(k=2$ admits Itô's formula) \bullet σ is of class $\mathcal{C}^I.$ $\,$ ($\!I=1$ admits Stratonovich term)
- In Filipović (2000) we have $k = 2$ and $l = 1$.
- In Nakayama (2004) we have $k = 1$ and $l = 1$.
- \bullet Here we have $k = 2$ and $l = 0$.
- In any case we have

$$
k+l\geq 2.
$$

 $\mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d$

Interplay between SPDEs and finite dimensional SDEs

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) [SPDEs and invariant manifolds in embedded Hilbert spaces](#page-0-0)

御 ▶ すき ▶ すき

 QQ

- **o** Literature:
	- \bullet Itô (1984).
	- ² Kallianpur & Xiong (1995).
- Separable Hilbert spaces $(\mathscr{S}_\rho(\mathbb{R}^d))_{\rho \in \mathbb{R}}$ such that

$$
\mathscr{S}(\mathbb{R}^d) \subset \mathscr{S}_p(\mathbb{R}^d) \subset \mathscr{S}'(\mathbb{R}^d) \quad \forall p \in \mathbb{R}.
$$

• For $q \leq p$ we have the continuous embedding

$$
(\mathscr{S}_{p}(\mathbb{R}^{d}),\mathscr{S}_{q}(\mathbb{R}^{d})).
$$

• For $q < 0 < p$ we have $\mathscr{S}(\mathbb{R}^d) \subset \mathscr{S}_\rho(\mathbb{R}^d) \subset \mathscr{S}_0(\mathbb{R}^d) = L^2(\mathbb{R}^d) \subset \mathscr{S}_q(\mathbb{R}^d) \subset \mathscr{S}'(\mathbb{R}^d)\,.$ ${z}$ ${z}$ functions distributions

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) [SPDEs and invariant manifolds in embedded Hilbert spaces](#page-0-0)

御 ▶ イヨ ▶ イヨ ▶ │

 200

For $k \in \mathbb{N}_0$ and $p > \frac{d}{4} + \frac{k}{2}$ $\frac{\kappa}{2}$ we have the continuous embedding $\left(\mathscr{S}_{p}(\mathbb{R}^{d}), C_{0}^{k}(\mathbb{R}^{d})\right)$.

• For each $p \in \mathbb{R}$ we obtain the dual pair

$$
(\mathscr{S}_{-p}(\mathbb{R}^d),\mathscr{S}_{p}(\mathbb{R}^d),\langle\cdot,\cdot\rangle).
$$

• Continuous linear operators

$$
\partial_i : \mathscr{S}_{p+\frac{1}{2}}(\mathbb{R}^d) \to \mathscr{S}_p(\mathbb{R}^d).
$$

 200

Finite dimensional diffusions

We consider the \mathbb{R}^d -valued SDE

$$
\begin{cases}\n dX_t = b(X_t)dt + \sigma(X_t)dW_t \\
 X_0 = x_0.\n\end{cases} \tag{9}
$$

- Coefficients $b : \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma : \mathbb{R}^d \to \ell^2(\mathbb{R}^d)$.
- Suppose that for some $q>\frac{d}{4}$ $\frac{a}{4}$ we have

$$
b_i \in \mathscr{S}_q(\mathbb{R}^d) \quad \forall i = 1, ..., d,
$$

\n
$$
\sigma_i^j \in \mathscr{S}_q(\mathbb{R}^d) \quad \forall i = 1, ..., d \quad \forall j \in \mathbb{N}.
$$

Let $\mathcal N$ be a $\mathcal C^2$ -submanifold of $\mathbb R^d$.

Definition of the SPDE

• We define the Hermite Sobolev spaces

$$
G := \mathscr{S}_{-q}(\mathbb{R}^d) \quad \text{and} \quad H := \mathscr{S}_{-(q+1)}(\mathbb{R}^d).
$$

• We consider the SPDE

$$
\begin{cases}\ndY_t = L(Y_t)dt + A(Y_t)dW_t \\
Y_0 = y_0.\n\end{cases}
$$
\n(10)

御 ▶ イヨ ▶ イヨ ▶

 QQ

Here $L:G\rightarrow H$ and $A:G\rightarrow \ell^2(H)$ are given by

$$
L(y) := \frac{1}{2} \sum_{i,j=1}^d (\langle \sigma, y \rangle \langle \sigma, y \rangle^\top)_{ij} \partial_{ij}^2 y - \sum_{i=1}^d \langle b_i, y \rangle \partial_i y,
$$

$$
A^j(y) := - \sum_{i=1}^d \langle \sigma_i^j, y \rangle \partial_i y, \quad j \in \mathbb{N}.
$$

Definition of the submanifold

• We define the submanifold

$$
\mathcal{M} := \{\delta_x : x \in \mathcal{N}\}.
$$

• Here $\delta_x \in G$ is the *Dirac distribution*

$$
\langle \delta_x, \varphi \rangle := \varphi(x) \quad \forall \varphi \in \mathscr{S}(\mathbb{R}^d).
$$

Theorem 3 – Bhaskaran & Tappe (2024)

The following statements are equivalent:

- \bullet N is locally invariant for the SDE [\(9\)](#page-20-0).
- 2 M is locally invariant for the SPDE [\(10\)](#page-21-0).

Finite dimensional diffusions

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) [SPDEs and invariant manifolds in embedded Hilbert spaces](#page-0-0)

4日)

同→ イヨ → イヨ

 299

∍

Submanifolds given by zeros of functions

Recall the \mathbb{R}^d -valued SDE

$$
\begin{cases}\ndX_t = b(X_t)dt + \sigma(X_t)dW_t \\
X_0 = x_0.\n\end{cases}
$$
\n(11)

- Suppose $b_i \in \mathscr{S}_q(\mathbb{R}^d)$ and $\sigma_i^j \in \mathscr{S}_q(\mathbb{R}^d)$ for some $q > \frac{d}{4}$ $\frac{a}{4}$.
- We assume there is $f:\mathbb{R}^d \rightarrow \mathbb{R}^n$ such that

$$
\mathcal{N} = \{x \in O : f(x) = 0\}, \quad \text{where } O \subset \mathbb{R}^d \text{ is open.}
$$

- Here $m = d n$, where $m = \dim N$.
- We assume that $f_k \in \mathscr{S}_{q+1}(\mathbb{R}^d)$ for all $k=1,\ldots,n.$
- We also assume that $Df(x)\mathbb{R}^d=\mathbb{R}^n$ for all $x\in\mathcal{N}.$

Theorem 4 – Bhaskaran & Tappe (2024)

The following statements are equivalent:

- \bullet N is locally invariant for the SDE [\(11\)](#page-24-0).
- **2** For all $k = 1, \ldots, n$ and all $x \in \mathcal{N}$ we have

$$
\langle \sigma^j(x), \nabla f_k(x) \rangle = 0, \quad j \in \mathbb{N},
$$

$$
\langle b(x), \nabla f_k(x) \rangle + \frac{1}{2} \text{tr}(\sigma(x)\sigma(x)^\top \mathbf{H}_{f_k}(x)) = 0.
$$

• For the proof of $(2) \Rightarrow (1)$ we apply Theorem 3.

伊 ▶ (ヨ)

 200

The unit sphere

• For $d > 2$ we consider the unit sphere

$$
\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d : ||x|| = 1\}.
$$

Corollary 1

The following statements are equivalent:

$$
\bullet
$$
 \mathbb{S}^{d-1} is (locally) invariant for the SDE (11).

• For all
$$
x \in \mathbb{S}^{d-1}
$$
 we have

$$
\langle \sigma^j(x), x \rangle = 0, \quad j \in \mathbb{N}, \tag{12}
$$

$$
\langle b(x), x \rangle + \frac{1}{2} \text{tr} \big(\sigma(x) \sigma(x)^\top \big) = 0. \tag{13}
$$

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

 2990

э

For the proof consider $f(x) = ||x||^2 - 1$.

Wiener process on the unit sphere

We consider the \mathbb{R}^d -valued SDE

$$
\begin{cases}\ndX_t = -\frac{d-1}{2}X_t dt + (\mathrm{Id} - X_t X_t^\top)dW_t \\
X_0 = x_0.\n\end{cases}
$$
\n(14)

Here W is an \mathbb{R}^d -valued Wiener process.

Example 1

The unit sphere \mathbb{S}^{d-1} is invariant for the SDE [\(14\)](#page-27-0).

- This is a consequence of Corollary 1.
- For example [\(12\)](#page-26-0) is satisfied, because for all $x \in \mathbb{S}^{d-1}$ we have

$$
(\text{Id} - x^{\top})x = x - xx^{\top}x = x(1 - x^{\top}x) = x(1 - ||x||^2) = 0.
$$

 QQ

Another example

Consider the \mathbb{R}^2 -valued SDE

$$
\begin{cases}\ndX_t = b(X_t)dt + \sigma(X_t)dW_t \\
X_0 = x_0.\n\end{cases}
$$
\n(15)

 \bullet Here W is an $\mathbb R$ -valued Wiener process.

The coefficients $b,\sigma:\mathbb{R}^2\to\mathbb{R}^2$ are given by

$$
b(x) := -\frac{1}{2}\lambda(x)^2x,
$$

$$
\sigma(x) := \lambda(x)(-x_2, x_1)^\top.
$$

Here $\lambda : \mathbb{R}^2 \to \mathbb{R}$ is an arbitrary continuous function.

Example 2 The unit sphere \mathbb{S}^1 is invariant for the SDE [\(15\)](#page-28-0). QQ

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) [SPDEs and invariant manifolds in embedded Hilbert spaces](#page-0-0)

- Papers about invariance for finite dimensional diffusions:
	- ¹ Abi Jaber (2017); Abi Jaber, Bouchard & Illand (2019).
	- ² Bardi & Goatin (1999); Bardi & Jensen (2002).
	- ³ Da Prato & Frankowska (2004).
- Choosing the mapping

$$
\lambda : \mathbb{R}^2 \to \mathbb{R}, \quad \lambda(x) := |\arg(x)|^{\frac{1}{4}}
$$

the following statements are true:

 $\textbf{1}$ b and σ are continuous, but not locally Lipschitz on $\mathbb{S}^1.$

2
$$
\sigma
$$
 is *not* of class C^1 .

$$
\bullet \quad \sigma\sigma^{\top} \text{ is not of class } C^1.
$$

References I

- Abi Jaber, E. (2017): Stochastic invariance of closed sets for 暈 jump-diffusions with non-Lipschitz coefficients. Electron. Commun. Probab. 22(53), 1–15.
- Abi Jaber, E., Bouchard, B., Illand, C. (2019): Stochastic 暈 invariance of closed sets with non-Lipschitz coefficients. Stoch. Process. Appl. 129(5), 1726–1748.
- Bardi, M., Goatin, P. (1999): Invariant sets for controlled **FRIDA** degenerate diffusions: a viscosity solutions approach. In: Stochastic analysis, control, optimization and applications. Birkhäuser, Boston, pp. 191–208.
- F Bardi, M., Jensen, R. (2002): A geometric characterization of viable sets for controlled degenerate diffusions. Set-Valued Analysis 10(2-3), 129–141.

 200

References II

- Bhaskaran, R., Tappe, S. (2024): Stochastic partial differential 量 equations and invariant manifolds in embedded Hilbert spaces. Accepted for publication in Potential Analysis.
- 譶 Da Prato, G., Frankowska, H. (2004): Invariance of stochastic control systems with deterministic arguments. J. Differ. Equ. $200(1)$, 18–52.
- 歸 Filipović, D. (2000): Invariant manifolds for weak solutions to stochastic equations. Probab. Theory Relat. Fields 118(3), 323–341.
- H Itô, K. (1984): Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces. Society for Industrial and Applied Mathematics, Philadelphia.

∢ 何 ▶ (ヨ ▶ (ヨ ▶)

 200

- 暈 Kallianpur, G., Xiong, J. (1995): Stochastic Differential Equations in Infinite Dimensional Spaces. Institute of Mathematical Statistics Lecture Notes, Hayward.
- H Nakayama, T. (2004): Viability Theorem for SPDE's including HJM framework. J. Math. Sci. Univ. Tokyo 11(3), 313–324.