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Part 1

Invariant manifolds in finite dimensions
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Stochastic differential equations

Consider the Rd -valued SDE{
dXt = b(Xt)dt + σ(Xt)dWt

X0 = x0.
(1)

Here x0 ∈ Rd is the starting point.

We consider measurable mappings

b : Rd → Rd and σ : Rd → Rd×r .

W is an Rr -valued standard Wiener process.
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Invariant manifolds

Let M be an m-dimensional C 2-submanifold of Rd (m ≤ d).

M is called locally invariant for the SDE (1) if for each
x0 ∈ M there exists a local weak solution (B,W ,X ) with
X0 = x0 such that X τ ∈ M for some stopping time τ > 0.

Trajectory on an invariant submanifold:
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Classical invariance result

Recall the Rd -valued SDE{
dXt = b(Xt)dt + σ(Xt)dWt

X0 = x0.
(2)

We assume that b ∈ C (Rd ;Rd) and σ ∈ C 1(Rd ;Rd×r ).

Theorem 1

M is locally invariant for the SDE (2) if and only if

b(x)− 1

2

r∑
j=1

Dσj(x)σj(x) ∈ TxM,

σ1(x), . . . , σr (x) ∈ TxM

for all x ∈ M.
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Part 2

Stochastic partial differential equations and
invariant manifolds in embedded Hilbert spaces
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Normed spaces with continuous embedding

Let (G , ∥ · ∥G ) and (H, ∥ · ∥H) be normed spaces.

Then we call (G ,H) normed spaces with continuous
embedding if:

1 We have G ⊂ H as sets.
2 The embedding operator Id : (G , ∥ · ∥G ) → (H, ∥ · ∥H) is

continuous; that is, there is a constant K > 0 such that

∥x∥H ≤ K∥x∥G for all x ∈ G .

In the sequel, we are interested in continuous mappings

A : (G , ∥ · ∥G ) → (H, ∥ · ∥H).
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Stochastic partial differential equations

Let (G ,H) be continuously embedded separable Hilbert
spaces.

We consider the SPDE{
dYt = L(Yt)dt + A(Yt)dWt

Y0 = y0.

Continuous coefficients L : G → H and A : G → ℓ2(H).

Furthermore W = (W j)j∈N is an R∞-Wiener process.

A martingale solution Y is a G -valued adapted process on
some stochastic basis B such that

Yt = y0 +

∫ t

0
L(Ys)ds︸ ︷︷ ︸

in (H, ∥ · ∥H)

+

∫ t

0
A(Ys)dWs︸ ︷︷ ︸

in (H, ∥ · ∥H)

, t ∈ R+.
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Particular situations

Semilinear SPDEs, where

G := D(A),

endowed with the graph norm

∥y∥G =
√
∥y∥2H + ∥Ay∥2H , y ∈ G .

SPDEs in Hermite Sobolev spaces with

G := Sp+1(Rd) and H := Sp(Rd).
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The submanifold

Recall the general SPDE{
dYt = L(Yt)dt + A(Yt)dWt

Y0 = y0.
(3)

Let M be a (G ,H)-submanifold of class C 2:
1 M is a C 2-submanifold of H.
2 We have M ⊂ G .
3 We have τH ∩M = τG ∩M.

Let X(M) be the space of all vector fields on M; that is

A(y) ∈ TyM ∀y ∈ M.
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The general invariance result

Theorem 2 – Bhaskaran & Tappe (2024)

M is locally invariant for the SPDE (3) if and only if

Aj |M ∈ X(M), j ∈ N, (4)

[L|M]X(M) −
1

2

∞∑
j=1

[Aj |M,Aj |M]M = [0]X(M). (5)

The equation (5) is in the quotient space A(M)/X(M).

For A,B ∈ X(M) the term [A,B]M is locally given by

y 7→ D2ϕ(x)
(
Dϕ(x)−1A(y),Dϕ(x)−1B(y)

)
, y ∈ U ∩M,

where x := ϕ−1(y) ∈ V .
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Part 3

Semilinear stochastic partial differential equations
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Semilinear SPDEs

We consider the H-valued semilinear SPDE{
dYt =

(
AYt + α(Yt)

)
dt + σ(Yt)dWt

Y0 = y0.
(6)

Here A : H ⊃ D(A) → H is a densely defined, closed operator.

A could be the generator of a C0-semigroup (St)t≥0 on H.

Furthermore α : H → H and σ : H → ℓ2(H) are continuous.

A weak solution Y is an H-valued adapted process on some
stochastic basis B such that for all ζ ∈ D(A∗) we have

⟨ζ,Yt⟩H = ⟨ζ, y0⟩H +

∫ t

0

(
⟨A∗ζ,Ys⟩H + ⟨ζ, α(Ys)⟩H

)
ds

+

∫ t

0
⟨ζ, σ(Ys)⟩HdWs , t ∈ R+.
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Continuous embeddings and the submanifold

Consider the domain

G := D(A),

endowed with the graph norm

∥y∥G =
√
∥y∥2H + ∥Ay∥2H , y ∈ G .

(G ,H) are continuously embedded separable Hilbert spaces.

Moreover A : (G , ∥ · ∥G ) → (H, ∥ · ∥H) is continuous.
Let M be a C 2-submanifold of H.
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The invariance result

Proposition 1 – Bhaskaran & Tappe (2024)

The following statements are equivalent:

1 M is locally invariant for the semilinear SPDE (6).

2 M is a (G ,H)-submanifold, which is locally invariant for the
continuously embedded SPDE (6).

3 M is a (G ,H)-submanifold, and we have

σj |M ∈ X(M), j ∈ N, (7)

[(A+ α)|M]X(M) −
1

2

∞∑
j=1

[σj |M, σj |M] = [0]X(M). (8)

If σ is of class C 1, then (8) is equivalent to

A|M + α|M − 1

2

∞∑
j=1

Dσj · σj |M ∈ X(M).
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Remarks on the regularity

Let k , l ∈ N be such that:
1 M is a C k -submanifold of H. (k = 2 admits Itô’s formula)
2 σ is of class C l . (l = 1 admits Stratonovich term)

In Filipović (2000) we have k = 2 and l = 1.

In Nakayama (2004) we have k = 1 and l = 1.

Here we have k = 2 and l = 0.

In any case we have

k + l ≥ 2.
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Part 4

Interplay between SPDEs and
finite dimensional SDEs
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Hermite Sobolev spaces

Literature:
1 Itô (1984).
2 Kallianpur & Xiong (1995).

Separable Hilbert spaces (Sp(Rd))p∈R such that

S (Rd) ⊂ Sp(Rd) ⊂ S ′(Rd) ∀p ∈ R.

For q ≤ p we have the continuous embedding(
Sp(Rd),Sq(Rd)

)
.

For q ≤ 0 ≤ p we have

S (Rd) ⊂ Sp(Rd) ⊂ S0(Rd) = L2(Rd)︸ ︷︷ ︸
functions

⊂ Sq(Rd) ⊂ S ′(Rd)︸ ︷︷ ︸
distributions

.
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Further properties

For k ∈ N0 and p > d
4 + k

2 we have the continuous embedding(
Sp(Rd),C k

0 (Rd)
)
.

For each p ∈ R we obtain the dual pair(
S−p(Rd),Sp(Rd), ⟨·, ·⟩

)
.

Continuous linear operators

∂i : Sp+ 1
2
(Rd) → Sp(Rd).
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Finite dimensional diffusions

We consider the Rd -valued SDE{
dXt = b(Xt)dt + σ(Xt)dWt

X0 = x0.
(9)

Coefficients b : Rd → Rd and σ : Rd → ℓ2(Rd).

Suppose that for some q > d
4 we have

bi ∈ Sq(Rd) ∀i = 1, . . . , d ,

σj
i ∈ Sq(Rd) ∀i = 1, . . . , d ∀j ∈ N.

Let N be a C 2-submanifold of Rd .
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Definition of the SPDE

We define the Hermite Sobolev spaces

G := S−q(Rd) and H := S−(q+1)(Rd).

We consider the SPDE{
dYt = L(Yt)dt + A(Yt)dWt

Y0 = y0.
(10)

Here L : G → H and A : G → ℓ2(H) are given by

L(y) :=
1

2

d∑
i ,j=1

(⟨σ, y⟩⟨σ, y⟩⊤)ij∂2
ijy −

d∑
i=1

⟨bi , y⟩∂iy ,

Aj(y) := −
d∑

i=1

⟨σj
i , y⟩∂iy , j ∈ N.
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Definition of the submanifold

We define the submanifold

M := {δx : x ∈ N}.

Here δx ∈ G is the Dirac distribution

⟨δx , φ⟩ := φ(x) ∀φ ∈ S (Rd).

Theorem 3 – Bhaskaran & Tappe (2024)

The following statements are equivalent:

1 N is locally invariant for the SDE (9).

2 M is locally invariant for the SPDE (10).
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Part 5

Finite dimensional diffusions
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Submanifolds given by zeros of functions

Recall the Rd -valued SDE{
dXt = b(Xt)dt + σ(Xt)dWt

X0 = x0.
(11)

Suppose bi ∈ Sq(Rd) and σj
i ∈ Sq(Rd) for some q > d

4 .

We assume there is f : Rd → Rn such that

N = {x ∈ O : f (x) = 0}, where O ⊂ Rd is open.

Here m = d − n, where m = dimN .

We assume that fk ∈ Sq+1(Rd) for all k = 1, . . . , n.

We also assume that Df (x)Rd = Rn for all x ∈ N .
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The invariance result

Theorem 4 – Bhaskaran & Tappe (2024)

The following statements are equivalent:

1 N is locally invariant for the SDE (11).

2 For all k = 1, . . . , n and all x ∈ N we have

⟨σj(x),∇fk(x)⟩ = 0, j ∈ N,

⟨b(x),∇fk(x)⟩+
1

2
tr
(
σ(x)σ(x)⊤Hfk (x)

)
= 0.

For the proof of (2) ⇒ (1) we apply Theorem 3.
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The unit sphere

For d ≥ 2 we consider the unit sphere

Sd−1 = {x ∈ Rd : ∥x∥ = 1}.

Corollary 1

The following statements are equivalent:

1 Sd−1 is (locally) invariant for the SDE (11).

2 For all x ∈ Sd−1 we have

⟨σj(x), x⟩ = 0, j ∈ N, (12)

⟨b(x), x⟩+ 1

2
tr
(
σ(x)σ(x)⊤

)
= 0. (13)

For the proof consider f (x) = ∥x∥2 − 1.
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Wiener process on the unit sphere

We consider the Rd -valued SDE{
dXt = −d−1

2 Xtdt + (Id− XtX
⊤
t )dWt

X0 = x0.
(14)

Here W is an Rd -valued Wiener process.

Example 1

The unit sphere Sd−1 is invariant for the SDE (14).

This is a consequence of Corollary 1.

For example (12) is satisfied, because for all x ∈ Sd−1 we have

(Id− xx⊤)x = x − xx⊤x = x(1− x⊤x) = x(1− ∥x∥2) = 0.
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Another example

Consider the R2-valued SDE{
dXt = b(Xt)dt + σ(Xt)dWt

X0 = x0.
(15)

Here W is an R-valued Wiener process.

The coefficients b, σ : R2 → R2 are given by

b(x) := −1

2
λ(x)2x ,

σ(x) := λ(x)(−x2, x1)
⊤.

Here λ : R2 → R is an arbitrary continuous function.

Example 2

The unit sphere S1 is invariant for the SDE (15).
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Related literature

Papers about invariance for finite dimensional diffusions:
1 Abi Jaber (2017); Abi Jaber, Bouchard & Illand (2019).
2 Bardi & Goatin (1999); Bardi & Jensen (2002).
3 Da Prato & Frankowska (2004).

Choosing the mapping

λ : R2 → R, λ(x) := | arg(x)|
1
4

the following statements are true:
1 b and σ are continuous, but not locally Lipschitz on S1.
2 σ is not of class C 1.
3 σσ⊤ is not of class C 1.
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