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Flipping Coins to Win!
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Multi armed bandits: What do we discuss 

•  Sequentially generate samples from a number of arms 

• To maximise long term stochastic reward  (optimally manage explore and exploit 
trade-off) 

• Simple and yet interesting setting to illustrate the underlying conceptual ideas 

• A large number or practical applications esp. in online settings fit these 
settings with some adjustments



Which coin do you sample next?
To maximise expected reward



Applications: Clinical trials

• Four vaccines (or experimental drugs). Which ones to give to patients 

• ‘it seems apparent that a considerable saving of individuals otherwise sacrificed to 
the inferior (drug) treatment might be effected’ Thompson, 1933  

 
•



Applications

• Placing advertisements on a Google search 

• Web construction amongst many options 

• Recommendation systems 
  

• Movies/products to recommend 
• Facebook posts to show  
• News paper articles to bring to your attention 
• Price to offer for a digital good 

• Travel route to recommend amongst many



   Maximise expected reward 
or  

Minimise expected regret  



Stochastic regret minimisation 
problem  (Lai and Robbins 1985)  

Given K unknown probability distributions (Coins) that can be sampled from, 
sample to maximise expected reward or, equivalently, minimise the expected 
regret in n steps.  

What is the best explore and exploit trade-off
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Stochastic regret minimisation

 


K Bernoulli arms with unknown means  .   

W.l.o.g. . Expected regret  is suffered 
every time a sub-optimal arm  a is pulled 

(μ1, μ2, …, μK)

μ1 > max
a≥2

μa μ1 − μa



Algorithm generates samples sequentially

Aim:                 Max                     

equivalently     Min        

or                     Min    

T

∑
t=1

EXt

ERT = T × μ1 −
T

∑
t=1

EXt

ERT =
K

∑
a=1

(μ1 − μa) × ENa(T)



Stochastic regret minimisation 
problem  

Some simple strategies  



Egalitarian principle: Equal samples to all

 Each arm is given T/K samples 

Regret equals          

Linear in time T !

T
K ∑

a

(μ1 − μa)



 Greedy strategy: Follow the leader

Pull arm with the largest sample mean thus far 
Consider one coin heads w.p. 0.9.  

Other heads w.p. 0.6 

Regret at least  0.06 T, so linear  

                 Is sub linear regret possible?



 Explore then commit when  is knownμ1 − μ2

Sample each arm m times.  

Thereafter sample the empirical winner for remaining T-Km trials 

Regret  in two arms  and  setting,  setting           

       

                  

N(μ1,1) N(μ2,1) μ1 > μ2

m(μ1 − μ2) + (T − 2m) × exp(−m(μ1 − μ2)2/4))



 Explore then commit strategy

Minimum at   

Regret  

Logarithmic regret!  Requires knowledge of T and 
. 

m = Θ(log T)

≤ Θ(log T)

(μ1 − μ2)

T = 10,000, μ1 − μ2 = 2.5



 Successive elimination algo (Bounded [0, 1] rv)      α(t) =
2 log T

t

1.  Sample each active arm once. Compute indexes 

          

  and   

2. Eliminate arms for which  

4. If a single arm remains, then assign remaining samples to this arm. 

5. Increment t and repeat

UCBa(t) = X̄a,t + α(t) LCBa(t) = X̄a,t − α(t) .

UCBa(t) < max
a

LCBa(t)



Our friend: Hoeffding

Each   are independent, identically distributed with zero mean  

Law of large numbers, Central limit theorem  


                                     


Hoeffding’s  Inequality captures large deviations -    

                                 


 

Xi ∈ [−1,1]

1
n

n

∑
i=1

Xi ≈ 0 +
1

n
N(0,1)

P ( 1
n

n

∑
i=1

Xi ≥ ϵ) ≤ exp(−nϵ2/2) .



Concentration inequality   αt =
2 log T

t

     1/T      P (there exists t ≤ T :
1
t

t

∑
i=1

Xi ≥ αt) ≤
T

∑
t=1

P ( 1
t

t

∑
i=1

Xi ≥ αt) ≤

 for all t  
with probability  1-1/T 
X̄t ∈ μ ± αt



Successive elimination algorithm 

  
 

        If  

         

        eliminate 

UCBa(t) = X̄a,t + α(t)
LCBa(t) = X̄a,t − α(t)

UCBa(t) < max
a

LCBa(t)

α(t) =
2 log T

t



 Instance dependent regret 

Best arm, arm 1 will never be rejected on 
the good set. Arm 1 loses if 

                            

But  on a good set 

X̄1,t < X̄a,t − 2α(t)

X̄1,t ≥ μ1 − α(t) ≥ μa − α(t) ≥ X̄a,t − 2α(t)



Consider  tubes  

    X̄t ∈ μ ± 2αt

Exp. regret      O (log(T)∑
a

1
(μmax − μa) )



 Instance dependent regret 
 Suppose arm a rejected after sampled  times. 

   

Thus,  or   

So the total expected regret from the good set as well as from the rogue set  
is bounded from above by  

t + 1

μa + 2α(t) ≥ X̄a,t + α(t) ≥ X̄1,t − α(t) ≥ μ1 − 2α(t)

(μ1 − μa) ≤ 4α(t), t ≤ 32(μ1 − μa)−2log T

K + 1 + 32 log T∑
a≥2

(μ1 − μa)−1 .



 Upper Confidence Bound Algorithm (Auer et al. 2002)

Form an optimistic upper confidence bound (UCB) on each arm  

This UCB is greater than the sample average but converges to it as the 
number of samples increase  

It increases if arm is not sampled for a long time - encouraging exploration  
  
Algorithm simply involves sampling the arm with the largest UCB `Index’



Upper Confidence Bound Algorithm (Auer  et al. 2002) 

Adaptive arm selection   

At each step t+1 select an arm 
with the largest value of index 

             X̄a(t) +
2 log t
Na(t)



 Upper Confidence Bound Algorithm
UCB does a good trade-off between explore and exploit. 
  
        

       

Better than successive rejection 

ENa(T) ≤
8 log T

Δ2
a

+ 1 +
π2

3



Lower bounds and algorithms 
that match even the constant in 
the lower bounds - general 
distributions  



Large deviations result (Sanov’s Thm.)

Green true dist . Red empirical dist  (based on 
generated samples ) 

Prob of seeing emp dist when the true dist is  

  

 

       where   

ν μ
(X1, X2, …, Xn)

μ ν

≈ exp(−nKL(μ |ν))

KL(μ |ν) =
4

∑
i=1

μi log ( μi

νi )
0

0.1

0.2

0.3

0.4

x1 x2 x3 x4



   Lower bounds    Lai and Robbins 88, Burneta Katehakis 96

                                 

                     

      where     

         

           

          

lim inf
T→∞

ENa(T)
log T

≥
1

KLinf(μa, m(μ1))

KLinf(μa, x) = inf
ν∈ℒ:m(ν)>x

KL(μa, ν)



 Heuristic argument for lower bound: Using Sanov’s Thm.

For arm a and 1, generated samples  with h.p. close to true dist.  

Algorithm concerned that data of arm a coming from dist  with , 
and current data a large deviations  leading to wrong conclusion. 

Evidence needed so regret from potential error is small. 

If m  samples given to arm a. Chance that arm a is from dist  and emp dist looks 
like       

                 .

ν m(ν) > m(μ1)

ν
μa

≈ exp(−mKL(μa |ν))



• Want m  so error prob is order 1/T  

So                          

Want this for all  with , hence            

                            

Arm 1 gets most of T samples. Its large deviations not a 
concern

m ≥
log T

KL(μa |ν)

ν m(ν) > m(μ1)

m ≥
log T

KLinf(μa |m(μ1))



                      The Data Processing Inequality                                                   

                                     

         

 

             

     

                                       

KL(PX |QX) ≥ KL(Pg(X) |Qg(X))

KL(Pμ(X) |Pν(X)) ≥ KL(Pμ(IE) |Pν(IE))

KL(Pμ(X) |Pν(X)) =
K

∑
a=1

EPμ
Na(T)KL(μa |νa)



KL-UCB Algorithm 
We restrict arm distributions to 

     ℒ := { Probability measures η : 𝔼X∼η( |X |1+ϵ ≤ B}



Some conditions on the underlying distributions are necessary 
Glynn and J 2015 

Easy to find two distributions 
whose  

KL distance is arbitrarily close 

but means are arbitrarily far  

Intermission 

https://www.jimmycarr.com/



 KL-UCB Algorithm: Index based  (Garivier, Cappe 2011, Agrawal, J, Koolen 2021)

A disc around empirical distribution 
Largest mean in that disc is the index                        

   

Matches the lower bound!                               

Ua(t) = sup {m(κ), κ ∈ ℒ, KL( ̂μa |κ) ≤
log T
Na(t) } = sup {x : KLinf( ̂μa |x) ≤

log T
Na(t) }

̂μa

m(κ) = const .

m(κ*)
KL( ̂μa |κ) =

log T
Na(t)



All indexes typically dominate their mean 

At least one arm gets  samples. So its 
index close to its mean 

So arm 1 must get most of the samples

≥ t/K

Heuristic argument on why the algorithm works      



Every time arm  wins, its index just exceeds 
index of arm 1. Thus, 

                                     

 

a ≠ 1

Na(t) ≈
log t

KLinf(μa |m(μ1))



KL Upper Confidence Bound Algorithm (for Bernoulli’s) 

Adaptive arm selection   

sup {x : KLinf( ̂μ2 |x) ≤
log T

n }
Index



This relies on controlling probabilities such as 

    

Dual representations, exponential concave inequalities and mixture martingales 
cleverly used for this


P(∃t ∈ N : Na(t)KLinf( ̂μa(t), m(μa)) ≥ x)

Rigorous analysis requires bounding the times sub-optimal 
arms are pulled  (Agrawal, J Glynn, 2020, Agrawal, J, Koolen 2021)  



It  equals      such that 

  
   

 

  
  
 This is a convex program and is solved through Lagrangian duality.  

inf
κ ∑

i

log ( ηi

κi ) ηi

∑
i

|yi |
1+ϵ κi ≤ B, ∑

i

yiκi ≥ x and ∑
i

κi = 1.

Understanding  KLinf(η, x)



  where 
  

For  empirical distribution  we have  equals  

 

In developing concentration inequality for this, the maximum function poses difficulties. 
We observe that inside the maximum we have a sum of exp-concave functions.

max
(λ1,λ2)∈ℛ2

Eη log(1 − (X − x)λ1 − (B − |X |1+ϵ λ2),

̂μa(n) KLinf( ̂μa(t), m(μa))

max
(λ1,λ2)∈ℛ2

1
Na(n)

Na(n)

∑
i=1

log(1 − (Xi − m(μ1))λ1 − (B − |Xi |
1+ϵ )λ2)) .

Using duality,   can be seen to equal KLinf(η, x)



Let  be a compact and convex subset and q be the uniform distribution on 
. Let  be any series of exp-concave functions. Then 

                      

Thus    is close to the expectation .  

The latter is a mixture of super-martingales and hence is a super martingale. 

Λ ⊆ ℜd

Λ gt : Λ → ℜ

max
λ∈Λ

T

∑
t=1

gt(λ) ≤ log Eλ∼qe
∑T

t=1 gt(λ) + d log(T + 1) + 1.

max
λ∈Λ

exp (
T

∑
t=1

gt(λ)) Eλ∼qe
∑T

t=1 gt(λ)

Sum of exp concave functions: a useful inequality 



Ville's inequality: For a non-negative super martingale 
, 

                        

(Mn : n ≥ 0)

P(∃n : Mn ≥ x) ≤
EM0

x
.

Ville’s inequality 



Let  and  be any probability measures on a common space. 
Then, 

                              

μ ν

KL(μ |ν) = sup
g

(Eμg − log Eνeg) .

Donsker Varadhan Representation of KL Divergence 



Conclusion 

 
• Introduced the regret minimisation problem along with practical 

applications 

• Discussed many naive and then sensible rules for arm selection and 
analysed their performance 

• Arrived at a lower bound on the samples needed 

• Introduced KL_UCB algorithm that is optimal for general distributions 


