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Transition functions

Definition
Let {X(t)}t≥0 be a Markov process with values in (E, E ). The transition probability
function1 is a function P (s, x, t, A) where 0 ≤ s ≤ t <∞, x ∈ E and A ∈ E with the
following properties:

1. For each 0 ≤ s ≤ t <∞ and each x ∈ E, P (s, x, t, ·) is a probability measure
on E .

2. For each 0 ≤ s ≤ t <∞ and each A ∈ E , P (s, ·, t, A) is a E -measurable
function.

3. P[X(t) ∈ A|X(s)] = P (s,X(s), t, A), P-a.s. for each 0 ≤ s ≤ t <∞ and A ∈ E .
4. Chapman-Kolmogorov equation. For any 0 ≤ s ≤ u ≤ t <∞, x ∈ E and A ∈ E ,

we have

P (s, x, t, A) =

∫
E

P (s, x, u, dy)P (u, y, t, A). (CKe)

1X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.
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Kolmogorov equation: An intuitive idea2

q Assume that the transition probabilities admits a density, say p(s, x, t, y) ≥ 0.
We will assume that p(s, x, t, y) is smooth in s, x.

q If s > 0, then for a small h > 0, we have by Chapman-Kolmogorov equation,

p(s− h, x, t, y) =

∫
R
p(s− h, x, s, z)p(s, z, t, y)dz.

q Let us expand p(s, z, t, y) around x as

p(s, z, t, y) = p(s, x, t, y) + (z − x)
∂

∂x
p(s, x, t, y) +

1

2
(z − x)2

∂2

∂x2
p(s, x, t, y)

+ o(|z − x|3).

q Assume that the limits A(s, x) := lim
h↓0

1
h

∫
R(z − x)p(s− h, x, s, z)dz, and

B2(s, x) := lim
h↓0

1
h

∫
R(z − x)2p(s− h, x, s, z)dz exist.

q Then, for t > s, p fulfills the backward equation

− ∂

∂s
p(s, x, t, y) = A(s, x)

∂

∂x
p(s, x, t, y) +

1

2
B2(s, x)

∂2

∂x2
p(s, x, t, y).

2A. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann.,
104(1) (1931), 415–458.
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Kolmogorov equation: Analytic viewpoint3

q Consider the familiy of Gaussian kernals

pt(x) =
1

(2πt)
d
2

e−
|x|2
2t , t > 0, x ∈ Rd.

q It is easy to see that pt solves the heat equation:

∂tpt =
1

2
∆pt,

where ∆ is the standard Laplacian in Rd.
q From these kernels, we define the family of operators {Pt}t≥0, for some

suitable function f : Rd → R, as

Ptf(x) :=

∫
Rd

f(y)pt(x, y)dy, t > 0, x ∈ Rn,

with pt(x, y) = pt(x− y), (x, y) ∈ Rd × Rd.
q One may verify that P0f = f , where P0 is the identity operator and

Pt ◦ Ps = Pt+s, for t, s ≥ 0.
3D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, 348,

Springer, 2014.
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Kolmogorov equation: Probabilistic view point3

q Let Cb(Rd) denote the space of all bounded and uniformly continuous
functions defined on Rd and it is a Banach space with respect to the norm
‖f‖∞ = sup

x∈Rd

|f(x)|.

q Let B(·) is a d-dimensional Brownian motion in some probability space
(Ω,F ,P).

q It is worthwhile to note that Ptf(x) can be expressed as

Ptf(x) =

∫
Rd

f(y)
1

(2πt)
d
2

exp

{
−|x− y|2

2t

}
dy =

∫
Rd

f(y)Nx,tI(dy) = Ef(B(t))

q Clearly, B(t) is solution to the following simplest Itô equation in Rd:{
dX(t) = dB(t),

X(0) = 0.
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Kolmogorov equation: Deterministic case

q We consider here the problem{
X ′(t) = b(t,X(t)), t ∈ (s, T )

X(s) = x ∈ Rd,
(KEd)

where s ∈ [0, T ) and b : [0, T ]× Rd → Rd.
q We assume moreover b possesses a partial derivative Dxb which is continuous

and bounded on [0, T ]× Rd. As well known, under these assumptions problem
(KEd) has a unique solution X(·) = X(·, s, x) ∈ C1([0, T ];Rd).

q Let us define the transition evolution operator for any ϕ ∈ Bb(Rd) as

Ps,tϕ(x) = ϕ(X(t, s, x)), x ∈ Rd, s, t ∈ [0, T ].

Proposition

For any ϕ ∈ C1
b(Rd), we have

d

dt
Ps,tϕ = Ps,tK (t)ϕ for s, t ∈ (0, T ),

where K (t)ϕ(x) = (b(t, x),Dxϕ(x)), for x ∈ Rd, ϕ ∈ C1
b(Rd) and t ∈ (0, T ).
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Kolmogorov equation: Stochastic case4

q Let B(·) be a d-dimensional Brownian motion on probability space (Ω,Fs,P).
We are here concerned with the stochastic evolution equation in Rd{

dX(t) = b(t,X(t))dt+ σ(t,X(t))dB(t),

X(s) = x,
(KEs)

where 0 ≤ s < t ≤ T .
q In this case the transition evolution operator for any ϕ ∈ Bb(Rd) is

Ps,tϕ(x) = E[ϕ(X(t, s, x))], x ∈ Rd, s, t ∈ [0, T ].

Proposition

Let ϕ ∈ C2
b(Rd). Then Ps,tϕ is differentiable with respect to t and we have

d

dt
Ps,tϕ = Ps,tK (t)ϕ, for t ≥ 0, (1)

where for all t ∈ [0, T ],

K (s)ϕ(x) =
1

2
Tr[D2

xϕ(x)σ(s, x)σ
∗(s, x)] + (b(s, x),Dxϕ(x)), ϕ ∈ C2

b(Rd).

4G. D. Prato, Introduction to Stochastic Analysis and Malliavin Calculus, Third edition, Volume 13,
Pisa, 2014.
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Example4

q Consider the following parabolic equation5 in Rd:ut(t, x) =
1

2
Tr[QD2

xuxx(t, x)] + (Ax,Dxu(t, x)), t > 0,

u(0, x) = ϕ(x),
(2)

where A,Q ∈ L(Rd), Q is symmetric and positive definite.
q The corresponding stochastic differential equation is{

dX(t) = AX(t)dt+
√

QdB(t),

X(0) = x ∈ Rd.
(3)

q The solution of (3) is given by variation of constants formula

X(t, x) = etAx+

∫ t

0

e(t−s)A
√

QdB(s), t ≥ 0.

4G. D. Prato, Introduction to Stochastic Analysis and Malliavin Calculus, Third edition, Volume 13,
Pisa, 2014.

5N. V. Krylov, Lectures on Elliptic and Parabolic equations in Höder spaces, AMS, Providence, 1996.
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Example4

q Therefore, the law of X(t, x) is given by

L (X(t, x)) = NetAx,Qt
,

where

Qt =

∫ t

0

esAQesA
∗
ds, t ≥ 0,

and A∗ is the adjoint of A.
q Consequently, the transition semigroup Pt looks like

Ptϕ(x) := E[ϕ(X(t, x))] =

∫
Rd

ϕ(y)NetAx,Qt
(dy),

and so, if ϕ ∈ C2
b(Rd), the solution of (2) is given by

u(t, x) = Ptϕ(x), t ≥ 0, x ∈ Rd.

q If, in particular, detQt > 0, we have

u(t, x) = (2π)−
d
2 [detQt]

− 1
2

∫
Rd

exp

(
−1

2

(
Q−1

t (y − etAx), (y − etAx)
))

ϕ(y)dy.
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Convective Brinkman-Forchheimer(CBF) equations

Let O ⊂ R2 be a bounded domain with the smooth boundary ∂O. The motion of
the incompressible fluid governed by the CBF equations6 for (t, ξ) ∈ (0, T )×O

∂y

∂t
− µ∆y︸ ︷︷ ︸

diffusion

+(y · ∇)y︸ ︷︷ ︸
convection

+αy + β|y|r−1y︸ ︷︷ ︸
damping

+∇p = f , in O × (0, T ),

∇ · y(t, ξ) = 0, in O × [0, T ],

y(t, ξ) = 0, on ∂O × [0, T ],

y(0, ξ) = x(ξ), in O,∫
O
p(t, ξ)dξ = 0, in (0, T ),

(CBF)

where y(t, ξ) represents the velocity field of the fluid particle at time t and position
ξ, p(t, ξ) represents the pressure, and f is an external forcing.

q The constant µ > 0 is Brinkman coefficient (effective viscosity), and α, β > 0
represent the Darcy and Forchheimer coefficients, respectively.

q The absorption exponent r ∈ [1,∞) and r = 3 is known as critical exponent.
6K. Kinra and M. T. Mohan, Random attractors and invariant measures for stochastic convective

Brinkman-Forchheimer equations on 2D and 3D unbounded domains, Discrete Contin. Dyn. Syst. Ser. B,
29 (1), 2024.
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Function spaces

q Let C∞
0 (O;R2) denotes the space of all infinitely differentiable functions

(R2-valued) with compact support in O ⊂ R2.
q We define

V := {x ∈ C∞
0 (O,R2) : ∇ · x = 0},

H := the closure of V in the Lebesgue space L2(O) = L2(O;R2),

V := the closure of V in the Sobolev space H1
0(O) = H1

0(O;R2),

L̃p := the closure of V in the Lebesgue space Lp(O) = Lp(O;R2),

for p ∈ (2,∞).
q We characterize the spaces H and V with the norms

‖x‖2H :=

∫
O
|x(ξ)|2dξ and ‖x‖2V :=

∫
O
|∇x(ξ)|2dξ

respectively, and ‖x‖p
L̃p

=
∫
O |x(ξ)|pdξ, for p ∈ [2,∞).

q Let (·, ·) denotes the inner product in the Hilbert space H and 〈·, ·〉 denotes the
induced duality between the spaces V and its dual V′ as well as L̃p and its dual
L̃p′ , where 1

p
+ 1

p′ = 1.
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Operators

Projection operator

Let P : L2(O) → H be the Helmholtz-Hodge orthogonal projection.

Linear operator

We define the Stokes operator by Ay := −P∆y, y ∈ D(A) := V ∩H2(O).

Bilinear operator

q Let us define the trilinear form b(·, ·, ·) : V× V× V → R by

b(y,z,w) =

∫
O
(y(ξ) · ∇)z(ξ) ·w(ξ)dξ =

2∑
i,j=1

∫
O
yi(ξ)

∂zj(ξ)

∂ξi
wj(ξ)dξ.

q We also define the operator B(·, ·) : V× V → V′ by 〈B(y,z),w〉 := b(y,z,w).

q We denote B(y) := B(y,y) = P[(y · ∇)y].

Nonlinear operator

q Let us now consider the operator C(y) := P(|y|r−1y) for y ∈ V.
q The operator C(·) : V → V′ is well-defined.
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Stochastic convective Brinkman-Forchheimer equations

We consider the following stochastic convective Brinkman-Forchheimer (SCBF)
equations perturbed by additive noise:

dY (t, ξ)− µ∆Y (t, ξ) + (Y (t, ξ) · ∇)Y (t, ξ) + β|Y (t)|r−1Y (t, ξ) +∇p(t, ξ)

=
√

QdW(t, ξ), in O × (0, T ),

∇ · Y (t, ξ) = 0, in O × [0, T ],

Y (t, ξ) = 0, on ∂O × [0, T ],

Y (0, ξ) = y(ξ), in O,
where the unknown Y (·, ·) is a real valued process depending on ξ ∈ O and W(·) is
an L2(O)-valued Wiener process.
Abstract formulation of the stochastic system
Let us set X(t,x) := PY (t,y), x := Py and W(t) := PW(t). On projecting the
SCBF, we get{

dX(t) + [µAX(t) + B(X(t)) + βC(X(t))]dt =
√

QdW(t), t ∈ (0, T ),

X(0) = x,
(ASE)

where x ∈ H and
√
QdW is a colored noise defined on a stochastic basis

(Ω,F , {Ft}0≤t≤T ,P) with values in H.
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Assumptions

q Let (Ω,F ,P) be a complete probability space equipped with an increasing
family of sub-sigma fields {Ft}0≤t≤T of F satisfying the usual conditions.

q Let L(H,H) be the space of all bounded linear operators on H. Let the
covariance operator Q ∈ L(H,H) be such that Q is positive, symmetric and
trace class operator with ker Q = {0}.

q We assume that there exists a complete orthonormal system {ek}k∈N in H of
the covariance operator Q and a bounded sequence {µk}k∈N of positive real
numbers such that Qek = µkek, k ∈ N. Here µk is an eigenvalue corresponding
to the eigenfunction ek such that following holds:

TrQ =
∞∑

k=1

µk <∞ and
√

Qy =
∞∑

k=1

√
µk(y, ek)ek, for y ∈ H.

q We shall assume further that √
Q ∈ L(U,H),

where U is a Hilbert space, H ⊂ U and the injection of H into U is
Hilbert-Schmidt.
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Example

q For ε > 1, one can take Q = A−ε, {µk}k∈N = {λ−ε
k }k∈N and

U = V−ε = D(A− ε
2 ). Note that the asymptotic growth of λk are given by

λk ∼ k, for k = 1, 2, . . ..
q Then, we calculate

TrQ =
∞∑

k=1

(Qek, ek) =
∞∑

k=1

(A−εek, ek) =
∞∑

k=1

λ−ε
k ∼

∞∑
k=1

1

kε
<∞,

provided ε > 1.
q Furthermore the embedding H ↪→ V−ε is Hilbert-Schmidt, that is, the map

J : V−ε → H is a Hilbert-Schmidt operator. Indeed

‖J‖2L2(H,U) =
∞∑

k=1

‖Jek‖2U =
∞∑

k=1

‖ek‖2U =
∞∑

k=1

(A−εek, ek) <∞,

provided ε > 1.
q Moreover, we calculate

Tr(AQ) =
∞∑

k=1

((AQ)ek, ek)H =
∞∑

k=1

(A−ε+1ek, ek) ∼
∞∑

k=1

k−(ε−1) <∞,

provided ε > 2.
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Solution of SCBF equations

Global strong solution
Let x ∈ H be given. An H-valued {Ft}0≤t≤T -adapted stochastic process X(·) is
called a strong solution to the system (ASE) if the following conditions are satisfied:

(i) the process X ∈ L2(Ω; L∞(0, T ;H) ∩ L2(0, T ;V)) ∩ Lr+1(Ω; Lr+1(0, T ; L̃r+1))
and X(·) has a V-valued modification, which is progressively measurable with
continuous paths in H and X ∈ C([0, T ];H) ∩ L2(0, T ;V), P-a.s.,

(ii) the following equality holds for every t ∈ [0, T ], as an element of V′, P-a.s.

X(t) = X0 −
∫ t

0

[µAX(s) + B(X(s)) + βC(X(s))]ds+

∫ t

0

√
QdW(s), (GS)

(iii) the following Itô formula holds true for all t ∈ [0, T ], P-a.s.:

‖X(t)‖2H + 2α

∫ t

0

‖X(s)‖2Hds+ 2µ

∫ t

0

‖X(s)‖2Vds+ 2β

∫ t

0

‖X(s)‖r+1

L̃r+1ds

= ‖x‖2H + tTr(Q) + 2

∫ t

0

(
√

QdW(s),X(s)).
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Well-posedness to SCBF equations6

Theorem
Let x ∈ H be given. For r ∈ [1, 3], under the aforementioned assumptions, there
exists a pathwise unique strong solution X(·) to the system (ASE)7 such that

X ∈ L2(Ω; L∞(0, T ;H) ∩ L2(0, T ;V)) ∩ Lr+1(Ω; Lr+1(0, T ; L̃r+1)),

with P-a.s., continuous trajectories in H and X ∈ C([0, T ];H) ∩ L2(0, T ;V), P-a.s.
Moreover, for Tr(Q) <∞, we have following energy estimate:

E

[
sup

t∈[0,T ]

‖X(t)‖2H + 4µ

∫ T

0

‖∇X(t)‖2Hdt+ 4α

∫ T

0

‖X(t)‖2Hdt+ 4β

∫ T

0

‖X(t)‖r+1

L̃r+1dt

]
≤ 2

[
‖x‖2H + 7Tr(Q)T

]
.

6K. Kinra and M. T. Mohan, Random attractors and invariant measures for stochastic convective
Brinkman-Forchheimer equations on 2D and 3D unbounded domains, Discrete Contin. Dyn. Syst. Ser. B,
29 (1), 2024.

7M. T. Mohan, Stochastic convective Brinkman-Forchheimer equations, Submitted.
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Existence of an invariant measure

q Applying infinite-dimensional Itô’s formula to the process ‖X(·)‖2H, we obtain

2µ

t
E
[∫ t

0

‖X(s)‖2Vds
]
≤ 1

t0
‖x‖2H +Tr(Q), for all t > t0.

q By applying Markov’s inequlaity, we obtain

lim
r→∞

sup
t>t0

1

t

∫ t

0

P{‖X(s)‖V > r}ds ≤ lim
r→∞

sup
t>t0

1

r2
E
[
1

t

∫ t

0

‖X(s)‖2Vds
]
= 0. (T)

q Let us set ζt,x(·) = 1
t

∫ t

0
λs,x(·)ds, where λt,x(Λ) = P{X(t,x) ∈ Λ}, Λ ∈ B(H),

is the law of X(t,x) for each x ∈ H.
q From (T), the sequence of probability measures {ζt,x}t>0 is tight and hence by

the Krylov-Bogoliubov theorem8 that there is an invariant measure η for the
transition semigroup {Pt}t≥0.

8G. D. Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical
Society Lecture Note Series, Cambridge University Press, Cambridge, 1996.
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Kolmogorov operator

q Let us denote by Pt : Cb(H) → Cb(H), the transition semigroup

(Ptψ)(x) = E[ψ(X(t,x))], x ∈ H, t ≥ 0, ψ ∈ Cb(H),

where X = X(t,x) is the unique strong solution of the SCBF system (ASE).
q Let us introduce the following space:

EA(H) := linspan {ϕh(x) = ei(h,x) : h ∈ D(A)},

and on EA(H), the following Kolmogorov differential operator:

(N0ψ)(x) =
1

2
Tr

[
QD2

xψ(x)
]
− (µAx+ αx+ B(x) + βC(x),Dxψ(x)), (KO)

for all ψ ∈ EA(H).
q It is well known that the transition semigroup Pt associated with (ASE), can

be uniquely extended to a strongly continuous semigroup of contractions on
L2(H; η), still denoted by itself, since Cb(H) is dense in L2(H; η).

q Let us denote by N : D(N) ⊂ L2(H; η) → L2(H; η) as the infinitesimal
generator of Pt.
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Estimates on derivatives

Lemma

Let us write ξh(t,x) := DxX(t,x)h, for all x, h ∈ H and assume that
µ3λ1 + 2αµ2 > max{4‖Q‖L(H), 2Tr(Q)}. Then, we have

E
[
‖ξh(t,x)‖2H

]
≤ ‖h‖2He

2
µ2 ‖x‖2He

−
(
µλ1+2α− 2

µ2 Tr(Q)

)
t
, (Ee3)

for all t ∈ [0, T ].

Existence and uniqueness of invariant measure
There exists an invariant measure η for Pt. Furthermore, if the condition

µ3λ1 + 2αµ2 > max{4‖Q‖L(H), 2Tr(Q)},

holds true, then the invariant measure is unique.
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Approximations

q Now our aim is to study the infinitesimal generator N of Pt. Once again, we consider
the Kolmogorov operator (KO).

q Applying Itô’s formula, it follows easily that Nψ = N0ψ, for all ψ ∈ EA(H). Our main
goal is to show that EA(H) is the core of N .

q In order to do this, we need to find an estimate for∫
H
‖Aδx‖2m−2

H ‖Aδ+ 1
2 x‖2Hη(dx), where δ > 0 and m ∈ N.

q We first approximate (ASE) by the regular equations:{
dXε(t) + [µAXε(t) + αXε(t) + Bε(Xε(t)) + βCε(Xε(t))]dt =

√
QdW(t), t ≥ 0,

Xε(0) = x ∈ H,
(AE)

where

Bε(x) =

{
B(x) if ‖x‖V ≤ ε−1,

ε−2‖x‖−2
V B(x) if ‖x‖V > ε−1.

and

Cε(x) =
{ C(x) if ‖x‖V ≤ ε−1,

ε−(r+1)‖x‖−(r+1)
V C(x) if ‖x‖V > ε−1.
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Main results

Result-1

Let us assume that Tr(QA2δ) < +∞, for some δ ∈ ( 1
4
, 1
2
). Then, there are some

positive constants γi, for i = 1, 2, 3 depending on m such that if µ > Cϑ(δ,Q), then
following estimate holds for all ε > 0 and for all m ∈ N:

k1

∫
H
eλ‖x‖2H‖Aδx‖2mH

(
1 + λ‖x‖2H + ‖x‖r+1

L̃r+1

)
νε(dx)

+ k2

∫
H
eλ‖x‖2H‖Aδx‖2(m−1)

H ‖Aδ+ 1
2x‖2Hνε(dx)

+ k3

∫
H
eλ‖x‖2H‖Aδx‖2mH ‖x‖2Vνε(dx) ≤ γ1.

Result-2
Assume that Tr(AQ) < +∞. Then, we have∫

H
‖Ax‖2Hη(dx) ≤ C(‖Q‖L(H),Tr(Q), β, µ).
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Infinitesimal generator of transition semigroup

q We say that a linear operator A : D(A ) ⊂ H → H in a Hilbert space H is
dissipative if

‖ϕ‖H ≤ 1

λ
‖λϕ− A ϕ‖H for all ϕ ∈ D(A ), λ > 0.

q Any dissipative operator is closable. The dissipative operator A is called
m-dissipative if the range of λI− A coincides with H for some (and
consequently for any) λ > 0.

Lumer-Phillips theorem6

Let A : D(A ) ⊂ H → H be a dissipative operator in the Hilbert space H such that
D(A ) is dense in H. Assume that for some λ > 0, the range of λI− A is dense in
H. Then the closure of A is m-dissipative.

Result 3: Essential m-dissipativity
Assume that the condition µ > Cϑ(δ,Q), holds true and that Tr(AρQ) < +∞, for
some ρ > 2/3. Then N0 is dissipative in L2(H; η) and its closure N0 in L2(H; η)
coincides with the infinitesimal generator N of Pt in L2(H; η).

6G. D. Prato, Kolmogorov Equations for Stochastic PDEs, Advanced Courses in Mathematics, CRM
Barcelona, Birkhäuser Verlag, Basel, 2004.
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The “Carre du Champ’s” identity

q The following identity is straightforward:

N0(ϕ
2) = 2ϕN0ϕ+ ‖

√
QDxϕ‖2H for all ϕ ∈ EA(H).

q By exploiting the invariance of η and integrating the aforementioned identity with
respect to η over H, we obtain∫

H
N0ϕ(x)ϕ(x)η(dx) = −

1

2

∫
H
‖
√

QDxϕ(x)‖2Hη(dx).

q Let us now discuss the infinitesimal generator N of the semigroup {Pt}t≥0. We
endow the domain D(N) of N with the following graph norm:

‖ϕ‖2D(N) = ‖ϕ‖2L2(H;η)
+ ‖Nϕ‖2L2(H;η)

, ϕ ∈ D(N).

Lemma

The operator Q
1
2 Dxϕ defined in EA(H), is uniquely extendible to a linear bounded operator

from D(N) into L2(H, η;H). The extension is still denoted by Q
1
2 Dxϕ. Moreover, we have

the following “Carre du Champ’s” identity:∫
H
Nϕ(x)ϕ(x)η(dx) = −

1

2

∫
H
‖
√

QDxϕ(x)‖2Hη(dx) for all ϕ ∈ D(N)

and ‖Q
1
2 Dxϕ‖L2(H,η;H) ≤ ‖ϕ‖D(N) for all ϕ ∈ D(N).
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Applications: Infinite horizon problem

q We consider an infinite horizon problem described by the state equation for
incompressible 2D stochastic convective Brinkman-Forchheimer fluids for t > 0:{

dX(t) + [µAX(t) + αX(t) + B(X(t)) + βC(X(t))]dt =
√

QU(t)dt+
√

QdW(t),

X(0) = x.

(CE)
q We consider a cost functional of the form

J∞(U) = E
{∫ ∞

0
e−λt[f(X(t,x; U(t))) + h(U(t))]dt

}
,

over all adapted square integrable controls U, where f and h are real valued funtions
on H and λ > 0 is a discount factor.

q We define admissible class of control process

Uad :=
{
U(·) ∈ L2(Ω,L2(0,∞;H)) : ‖U(t)‖H ≤ R, P-a.s. and U(·) is Ft adapted

}
,

where R > 0 is fixed, corresponding to fixed reference probability space (Ω,F ,P).
q We again call (X(·),U(·)) an admissible control pair if U(·) is an Ft-adapted process

with values in H and X(·) is a weak solution to (CE) corresponding to U(·).
q We define the value function V : H → R corresponding to cost functional, as

V(x) := inf
U(·)∈Uad

J∞(U) = inf
U∈Uad

E
{∫ ∞

0
e−λt[f(X(t,x; U(·))) + h(U(t))]dt

}
.
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Applications: Infinite horizon problem

q We consider the following infinite dimensional second order stationary
Hamilton-Jacobi Bellman equation related to the stochastic optimal problem (KO):

λϕ(x)−
1

2
Tr

[
QD2

xϕ(x)
]

(HJB)

+ (µAx+ αx+ B(x) + βC(x),Dxϕ(x)) + g(Q1/2Dxϕ(x)) = f(x),

where λ > 0, f ∈ L2(H; η) and the Hamiltonian g : H → R is Lipschitz continuous.
q Moreover, g is defined as the Legendre transform of the convex function h : H → R:

g(x) = sup
y∈H

{(x,y)− h(y)}, x ∈ H.

Example

1. Let h(x) = 1
2
‖x‖2H for x ∈ H. Then, the Hamiltonian is given by g(x) = 1

2
‖x‖2H.

2. Let R > 0 be given and

h(x) =

{
1
2
‖x‖2H, if ‖x‖H ≤ R,
+∞, if ‖x‖H > R,

Then, the Hamiltonian g(·) is explicitly given by

g(x) =

{
1
2
‖x‖2H, if ‖x‖H ≤ R,

R‖x‖H − R2

2
, if ‖x‖H > R.
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Optimal stopping problem

q Let X(·) be the process associated with the following SCBF equations:{
dX(r) + [µAX(r) + αX(r) + B(X(r)) + βC(X(r))]dr =

√
QdW(r), r ≥ t,

X(t) = x.

q Let us define the value function of an optimal stopping problem associated
with SCBF equations as

ϕ(t,x) := inf
τ∈M

{
E
[∫ τ

t

F(s,X(s))ds

]
+ E[G(X(τ))]

}
, (VF)

where M is the family of all {Ft}t≥0 stopping times such that τ ∈ [t, T ] P-a.s.,
F : (0,∞)×H → R and G : H → R are given functions.
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Optimal stopping problem

q It can be seen that the value function ϕ defined by (VF) (after a suitable
change of time variable) is formally the solution to the following variational
inequality:

∂ϕ

∂t
(t,x)− 1

2
Tr

[
QD2

xϕ(t,x)
]
+ (µAx+ αx+ B(x) + βC(x),Dxϕ(t,x)) ≤ F(t,x),

for all t ≥ 0, x ∈ D(A), ϕ(t,x) ≤ G(x), for all t ≥ 0, x ∈ H,
∂ϕ

∂t
(t,x)− 1

2
Tr

[
QD2

xϕ(t,x)
]
+ (µAx+ αx+ B(x) + βC(x),Dxϕ(t,x)) = F(t,x),

in {x : ϕ(t,x) < G(x)}, ϕ(0,x) = ϕ0(x), x ∈ H.
(OP)

q Let us define the closed convex subset of L2(H; η) as
K =

{
ϕ ∈ L2(H; η) : ϕ ≤ G, η -a.e.

}
.

q We are going to study the existence and uniqueness result for the problem
(OP) which can be viewed as a nonlinear equation of the form:

dϕ(t)

dt
−Nϕ(t) +NKϕ(t) 3 F(t), t ∈ (0, T ),

ϕ(0) = ϕ0,

where ϕ0 ∈ L2(H; η) and L2([0, T ];L2(H; η)) are given.
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Thank you for your kind attention!!
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