
Properties of the gradient squared of the
discrete Gaussian free field

Rajat Subhra Hazra Leiden University
June 4, 2024

1 / 30



Abelian sandpile
The height-one field

Set s(x) = 0 for all x ∈ Λ ⋐ Zd

1. Choose a site x uniformly at random
2. s(x) ; s(x) + 1

3. If s(x) ≥ 2d (instability), topple x sending one “grain” to each neighbor

▶ If other sites become unstable, topple them as well
▶ Grains outside Λ are lost

4. Go to 1.

This Markov chain has a unique stationary measure P. We look at

Definition (Height-one field)
hΛ(x) := 1{s(x)=1} under P
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An example

s(x) = 15 δx=(0, 0) + 2 δx=(1,0)

15 2
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An example

4 1 2

1

1

1

4

4

Stable configuration!
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Going larger

Figure: Sandpile configuration on a 300× 300 box.
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The height one field
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Joint cumulants

Joint cumulants κ for r. v.’s X1, . . . , Xn are defined by

E

[
n∏

i=1

Xi

]
=

∑
π partition of {1, ..., n}

∏
B∈π

κ(Xi : i ∈ B)

Example
κ(X) = E[X], κ(X, Y ) = cov(X, Y )

We are going to study
κ(h(x1), . . . , h(xn))
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Question

Can there be random variables with cumulants equal to

κ(h(x1), . . . , h(xn))?

Regardless of the microscopic details of the model, what is the “driving
force” behind height one?
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Abelian sandpile
Ingredients

Let U ⊂ R2 be smooth connected bounded and Λ := Uϵ := U/ϵ ∩ Z2

Let
U 3 u 7→ uϵ = bu/ϵc ∈ Uϵ

Let gU (·, ·) be the harmonic Green’s function on U with Dirichlet
boundary conditions

u

uϵ

U Uϵ

Figure: U = B(0, 1), Uϵ = B(0, 2) ∩ Z2, ϵ = 1/2, u = (1/2, 1/2), uϵ = (1, 1)
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Abelian sandpile
Height-one field in d = 2

Theorem (Dürre (2009))
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Abelian sandpile
The connection to GFF

Let Ψ be a Gaussian free field with 0-boundary conditions on U :

Definition (GFF)
Ψ is the centered Gaussian random distribution with

E[Ψ(x)Ψ(y)] = gU (x, y), x 6= y ∈ U.

+ Antal Járai: formal computations show that

lim
ϵ→0

ϵ−2|V |κU (hUϵ(v) : v ∈ V ) = κU (: ‖∇Ψ(v)‖2 : , v ∈ V )

We investigated this conjecture
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Grad squared DGFF

Definition (DGFF)
Let (Γϵ(v) : v ∈ Uϵ) be the discrete GFF on Uϵ:

E[Γϵ(v)] = 0, E[Γϵ(v)Γϵ(u)] = GUϵ(u, v)

where GUϵ(·, ·) is the discrete harmonic Green’s function with Dirichlet b.c.

Definition (Grad squared DGFF)
The field (Φϵ(v) : v ∈ Uϵ) is defined as

Φϵ(v) =

d∑
i=1

: ∇iΓϵ(x)
2 :=

d∑
i=1

: (Γϵ(v + ei)− Γϵ(v))
2 :

We will work in d ≥ 2 (d = 1: manual calculations)
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Grad squared DGFF
Covariances

Call [d] := {1, . . . , d}.

E
[
Φϵ

(
xϵ

)
Φϵ

(
yϵ
)]

= 2
∑

i,j∈[d]

(
∇(1)

i ∇(2)
j GUϵ

(
xϵ, yϵ

))2
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Main results
Convergence of cumulants

Theorem (Cipriani, Hazra, Rapoport, Ruszel 2023)
Let E be the set of coordinate vectors of Rd. Let {x(1), . . . , x(k)} ⊂ U . Let
S0

cycl(B) be the set of cyclic permutations of a set B without fixed points. If
x(i) 6= x(j) for all i 6= j, then

lim
ϵ→0

ϵ−dkκ
(
Φϵ

(
x(j)
ϵ

)
: j ∈ [k]

)
=

2k−1
∑

σ∈S0
cycl([k])

∑
η:[k]→E

k∏
j=1

∂
(1)

η(j)∂
(2)

η(σ(j))gU
(
x(j)
ϵ , x(σ(j))

ϵ

)
In d = 2 the limit is conformally covariant with scale dimension 2
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Main results
Comparison in d = 2

Dürre:

lim
ϵ→0

ϵ
−2k

κ
(
hUϵ

(
x
(j)
ϵ

)
: j ∈ [k]

)
=

−C
k ∑

σ∈S0
cycl([k])

∑
η:[k]→E

k∏
j=1

∂
(1)
η(j)

∂
(2)
η(σ(j))

gU
(
x
(j)

, x
(σ(j)))

CHRR:

lim
ϵ→0

ϵ
−2k

κ
(
Φϵ

(
x
(j)
ϵ

)
: j ∈ [k]

)
= 2

k−1 ∑
σ∈S0

cycl([k])

∑
η:[k]→E

k∏
j=1

∂
(1)
η(j)

∂
(2)
η(σ(j))

gU
(
x
(j)

, x
(σ(j))

)

Corollary

−2 lim
ϵ→0

ϵ−2kκ
(C
2
Φϵ

(
x(j)
ϵ

)
: j ∈ [k]

)
= lim

ϵ→0
ϵ−2kκ

(
hUϵ

(
x(j)
ϵ

)
: j ∈ [k]

)
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Main results
Convergence as random distribution

Consider for f ∈ C∞
c (U), U ⊂ Rd,

〈Φϵ, f〉 =
∫
U

Φϵ (xϵ) f(x) dx.

Theorem (C, Hazra, Rapoport, Ruszel 2022)

χ−1/2 ϵ−
d/2 Φϵ

d−→ white noise on U,

in Cα
loc(U) for any α < −d/2, and the constant χ is

χ := 2
∑
v∈Zd

∑
i,j∈[d]

(
∇(1)

i ∇(2)
j G0(0, v)

)2

∈ (0, +∞)

where G0(·, ·) is the
{

infinite-volume discrete Green’s function in d ≥ 3

potential kernel in d = 2
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Main results
Comparison in d = 2

Dürre:
ϵ−1

√
χ
(hUϵ − E[hUϵ ])

d−→ white noise

CHRR:
ϵ−1

√
χ
Φϵ
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3
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Recap
What we have so far

Random distribution Scaling ϵ−
d/2 and limit are the same as height-one field

Cumulants Scaling ϵ−d and limit are the same as height-one field up to sign

17 / 30



Proofs
Why white noise?

Finite susceptibility ( ⇐⇒ χ ∈ (0, +∞)) suggests CLT-type rescaling and
WN convergence Bauerschmidt et al. (2014), Newman (1980)...

Kassel–Wu (2013) derive Gaussian fluctuations for models related to the
spanning tree measure (reprove Dürre)
We are not able to apply K–W’s results directly, but this hints at a
universality class of models related to the spanning tree measure via the
transfer current matrix T (·, ·)

E [∇iΓϵ(v)∇jΓϵ(u)] = T
(
(v, v + ei), (u, u+ ej)

)
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Proofs
Useful facts: white noise

For v, w ∈ Uϵ “away from the boundary”

E [Φϵ(v)Φϵ(w)] ≤ c ·

{
|v − w|−2d v 6= w ,

1 v = w .∣∣∣∇(1)
i ∇(2)

j GUϵ(v, w)−∇(1)
i ∇(2)

j G0(v, w)
∣∣∣ ≤ c ϵd ,
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Proofs
White noise

1. Φϵ is tight in an appropriate local Besov-Hölder space using a tightness
criterion of Furlan–Mourrat (2017)

▶ control of the summability of k-point functions
▶ use estimates for double derivatives of the Green’s function in a domain

2. Determine the finite-dimensional distributions

▶ vanishing cumulants of order at least three
▶ the limiting covariance structure is the L2(U) inner product
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Proofs
Why these cumulants?

To answer, we need to look at the proof first...
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Proofs
Useful facts: cumulants

T
(
(xϵ, xϵ + e), (yϵ, yϵ + e′)

)
= ϵd dgU |(x,y)(e, e′) + o(ϵd) (Kassel–Wu,

2013).
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Proofs
k-point functions

We derive cumulants from k-point functions:

E

[
k∏

j=1

Φϵ

(
x(j)
ϵ

)]
=

∑
π∈Π([k])

∏
B∈π

κ
(
Φϵ

(
x(j)
ϵ

)
: j ∈ B

)

1. Decompose k-point functions as
2. Expand the products of covariances in terms of the transfer matrix
3. Use the transfer matrix expansion

+ For ASP the proof uses explicitly the relation with the spanning tree measure
+ Kassel–Wu generalize this to models related to the spanning tree measure
conjecturing a universal and conformally covariant limit
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Proofs
Cumulants: another viewpoint

In the proof we (loosely) obtain that the k-point function is∑
γ FD on [2k]

∏(
(x

(j)
ϵ ,x

(j)
ϵ +e),(x

(m)
ϵ , x

(m)
ϵ +e′)

)
∈γ

ϵ−dT
(
(x(j)

ϵ , x(j)
ϵ +e), (x(m)

ϵ , x(m)
ϵ +e′)

)
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∈γ

ϵ−dT
(
(x(j)

ϵ , x(j)
ϵ + e)

)
, (x(m)

ϵ , x(m)
ϵ + e′)

)
︸ ︷︷ ︸

≈ ∂e∂e′gU (x(j),x(m))
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Fermionic (or Grassmannian) calculus

Definition (Grassmanian variables)
Let {ξi, ξ̄i : i ∈ Λ} be symbols that satisfy for all i, j

ξiξj = −ξjξi, ξiξ̄j = −ξ̄jξi, ξ̄iξ̄j = −ξ̄j ξ̄i

Example
Used in physics to model Fermi–Dirac statistics (opposed to Bose–Einstein
statistics)
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Fermionic Gaussian free field

Definition (fGFF)
For every function F of {ξ, ξ̄} = {ξi, ξ̄i : i ∈ Λ} the expectation of F under
the fGFF is defined as

[F ]fGFF =

∫
Berezin

dξ̄dξ e(ξ,−∆Λξ̄) F.

Compare with
[F ]DGFF ∝

∫
Rd

dφ e
1
4d

(φ,−∆Λφ) F

Example

[1]fGFF =

∫
Ber

dξ̄dξ e(ξ,−∆Λξ̄) = det(−∆Λ)∫
Rd

dφ e
1
4d

(φ,−∆Λφ) ∝ (det(−∆Λ))
−1/2
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“Fermionic gradient squared”

For v ∈ Λ = Uϵ

Xv =
1

2d

∑
e∋v edges

ζ(e)

ζ(e) =
(
ξv − ξu

)(
ξ̄v − ξ̄u

)
, e = {v, u}

Theorem (CCRR, 2023)

lim
ϵ→0

ϵ−2nκ
(
hUϵ

(
v(1)ϵ

)
, . . . , hUϵ

(
v(n)
ϵ

))
lim
ϵ→0

ϵ−2nκ
(
−CX

v
(1)
ϵ

, . . . , −CX
v
(n)
ϵ

)
.
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Summary & open questions
Summary

We studied the scaling limit of Φϵ as a random distribution and the scaling
limit of its k-point functions/cumulants

As a random distribution the limit is WN as height-one field: common
decay of correlations

The cumulants have the same limit as in the height-one field (up to sign)
and conformal covariance property
the Fermionic free field kind of identifies the height-one field and gives an
alternative the gradient free field squared.
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Summary & open questions
Open questions

Can one make sense of the scaling limit which captures the correlations?

what about other height fields?
Can one obtain other limits (than white noise) for these fields?
...
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Thank you!
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