Properties of the gradient squared of the discrete Gaussian free field

Rajat Subhra Hazra

Leiden University
June 4, 2024

The height-one field

Set $s(x) = 0$ for all $x \in \Lambda \Subset \mathbb{Z}^d$

The height-one field

Set $s(x) = 0$ for all $x \in \Lambda \Subset \mathbb{Z}^d$

1. Choose a site *x* uniformly at random

The height-one field

Set $s(x) = 0$ for all $x \in \Lambda \Subset \mathbb{Z}^d$

1. Choose a site *x* uniformly at random

2. $s(x) \to s(x) + 1$

The height-one field

Set $s(x) = 0$ for all $x \in \Lambda \Subset \mathbb{Z}^d$

- 1. Choose a site *x* uniformly at random
- 2. $s(x) \to s(x) + 1$
- 3. If $s(x) \geq 2d$ (instability), topple *x* sending one "grain" to each neighbor

The height-one field

Set $s(x) = 0$ for all $x \in \Lambda \Subset \mathbb{Z}^d$

- 1. Choose a site *x* uniformly at random
- 2. $s(x) \to s(x) + 1$
- 3. If $s(x) \geq 2d$ (instability), topple *x* sending one "grain" to each neighbor
	- ▶ If other sites become unstable, topple them as well

The height-one field

Set $s(x) = 0$ for all $x \in \Lambda \Subset \mathbb{Z}^d$

1. Choose a site *x* uniformly at random

2. $s(x) \to s(x) + 1$

- 3. If $s(x) \geq 2d$ (instability), topple *x* sending one "grain" to each neighbor
	- ▶ If other sites become unstable, topple them as well
	- \blacktriangleright Grains outside Λ are lost

The height-one field

Set $s(x) = 0$ for all $x \in \Lambda \Subset \mathbb{Z}^d$

1. Choose a site *x* uniformly at random

2. $s(x) \to s(x) + 1$

- 3. If $s(x) \geq 2d$ (instability), topple *x* sending one "grain" to each neighbor ▶ If other sites become unstable, topple them as well
	- \blacktriangleright Grains outside Λ are lost

4. Go to 1.

The height-one field

Set $s(x) = 0$ for all $x \in \Lambda \Subset \mathbb{Z}^d$

1. Choose a site *x* uniformly at random

2. $s(x) \to s(x) + 1$

- 3. If $s(x) \geq 2d$ (instability), topple x sending one "grain" to each neighbor ▶ If other sites become unstable, topple them as well
	- \triangleright Grains outside Λ are lost
- 4. Go to 1.

This Markov chain has a unique stationary measure P. We look at

Definition (Height-one field)

 $h_{\Lambda}(x) := \mathbf{1}_{\{s(x)=1\}}$ under $\mathbb P$

$$
s(x) = 15 \, \delta_{x=(0,0)} + 2 \, \delta_{x=(1,0)}
$$

Stable configuration!

Going larger

Figure: Sandpile configuration on a 300 *×* 300 box.

The height one field

Joint cumulants

Joint cumulants κ for r. v.'s X_1, \ldots, X_n are defined by

$$
E\left[\prod_{i=1}^{n} X_i\right] = \sum_{\pi \text{ partition of } \{1, ..., n\}} \prod_{B \in \pi} \kappa(X_i : i \in B)
$$

Joint cumulants

Joint cumulants κ for r. v.'s X_1, \ldots, X_n are defined by

$$
E\left[\prod_{i=1}^{n} X_i\right] = \sum_{\pi \text{ partition of } \{1, ..., n\}} \prod_{B \in \pi} \kappa(X_i : i \in B)
$$

Example $\kappa(X) = E[X], \ \kappa(X, Y) = \text{cov}(X, Y)$

Joint cumulants

Joint cumulants κ for r. v.'s X_1, \ldots, X_n are defined by

$$
E\left[\prod_{i=1}^{n} X_i\right] = \sum_{\pi \text{ partition of } \{1, ..., n\}} \prod_{B \in \pi} \kappa(X_i : i \in B)
$$

Example

 $\kappa(X) = E[X], \, \kappa(X, Y) = \text{cov}(X, Y)$

We are going to study

 $\kappa(h(x_1), \ldots, h(x_n))$

Question

Can there be random variables with cumulants equal to

$$
\kappa(h(x_1),\ldots,h(x_n))?
$$

Question

Can there be random variables with cumulants equal to

$$
\kappa(h(x_1),\ldots,h(x_n))?
$$

Regardless of the microscopic details of the model, what is the "driving force" behind height one?

Ingredients

- Let $U\subset \mathbb{R}^2$ be smooth connected bounded and $\Lambda:=U_\epsilon:=\frac{U/\epsilon\cap\mathbb{Z}^2}{2}$
- Let

$$
U \ni u \mapsto u_{\epsilon} = \lfloor u/\epsilon \rfloor \in U_{\epsilon}
$$

 \bullet Let $g_U(\cdot, \cdot)$ be the harmonic Green's function on U with Dirichlet boundary conditions

Figure: $U = B(0, 1), U_ε = B(0, 2) ∩ \mathbb{Z}^2, ε = 1/2, u = (1/2, 1/2), u_ε = (1, 1)$

Height-one field in $d = 2$

Theorem (Dürre (2009))

Theorem 2 (Scaling Limit for the Height One Joint Cumulants). Let V be as in Theorem 1 and suppose $|V| \ge 2$. Then as $\epsilon \to 0$ the rescaled joint cumulant $\epsilon^{-2|V|} \kappa (h_{U_{\epsilon}}(v_{\epsilon}) : v \in V)$ converges to

$$
\kappa_U(v : v \in V) := -C^{|V|} \sum_{\sigma \in S_{\text{cycl}}(V)} \sum_{(k^v)_{v \in V} \in [x, y]^V} \prod_{v \in V} \partial_k^{(1)} \partial_{k^{\sigma(v)}}^{(2)} g_U(v, \sigma(v)).
$$

\nHere $C := (2/\pi) - (4/\pi^2)$. That is, if we write $\kappa_U(v) := 0$ for all $v \in V$, then
\n
$$
\lim_{\epsilon \to 0} \epsilon^{-2|V|} \mathbb{E} \left[\prod_{v \in V} \left(h_{U_\epsilon}(v_\epsilon) - \mathbb{E}[h_{U_\epsilon}(v_\epsilon)] \right) \right] = \sum_{\Pi \in \Pi(V)} \prod_{B \in \Pi} \kappa_U(v : v \in B).
$$

The connection to GFF

Let Ψ be a Gaussian free field with 0-boundary conditions on *U*:

Definition (GFF)

 Ψ is the centered Gaussian random distribution with

 $\mathbb{E}[\Psi(x)\Psi(y)] = g_U(x, y), \quad x \neq y \in U.$

The connection to GFF

Let Ψ be a Gaussian free field with 0-boundary conditions on *U*:

Definition (GFF)

 Ψ is the centered Gaussian random distribution with

 $\mathbb{E}[\Psi(x)\Psi(y)] = g_U(x, y), \quad x \neq y \in U.$

☞ Antal Járai: formal computations show that

 $\lim_{\epsilon \to 0} \epsilon^{-2|V|} \kappa_U(h_{U_{\epsilon}}(v) : v \in V) = \kappa_U(: \|\nabla \Psi(v)\|^2 :, v \in V)$

The connection to GFF

Let Ψ be a Gaussian free field with 0-boundary conditions on *U*:

Definition (GFF)

 Ψ is the centered Gaussian random distribution with

 $\mathbb{E}[\Psi(x)\Psi(y)] = g_U(x, y), \quad x \neq y \in U.$

☞ Antal Járai: formal computations show that

$$
\lim_{\epsilon \to 0} \epsilon^{-2|V|} \kappa_U(h_{U_{\epsilon}}(v) : v \in V) = \kappa_U(:\|\nabla \Psi(v)\|^2 :, v \in V)
$$

We investigated this conjecture

Grad squared DGFF

Definition (DGFF)

Let $(\Gamma_{\epsilon}(v): v \in U_{\epsilon})$ be the discrete GFF on U_{ϵ} :

 $\mathbb{E}[\Gamma_{\epsilon}(v)] = 0, \quad \mathbb{E}[\Gamma_{\epsilon}(v)\Gamma_{\epsilon}(u)] = G_{U_{\epsilon}}(u, v)$

where $G_{U_{\bm{\epsilon}}}(\cdot,\,\cdot)$ is the discrete harmonic Green's function with Dirichlet b.c.

Grad squared DGFF

Definition (DGFF)

Let $(\Gamma_{\epsilon}(v) : v \in U_{\epsilon})$ be the discrete GFF on U_{ϵ} :

 $\mathbb{E}[\Gamma_{\epsilon}(v)] = 0, \quad \mathbb{E}[\Gamma_{\epsilon}(v)\Gamma_{\epsilon}(u)] = G_{U_{\epsilon}}(u, v)$

where $G_{U_{\bm{\epsilon}}}(\cdot,\,\cdot)$ is the discrete harmonic Green's function with Dirichlet b.c.

Definition (Grad squared DGFF)

The field $(\Phi_{\epsilon}(v): v \in U_{\epsilon})$ is defined as

$$
\Phi_{\epsilon}(v) = \sum_{i=1}^{d} : \nabla_{i} \Gamma_{\epsilon}(x)^{2} := \sum_{i=1}^{d} : (\Gamma_{\epsilon}(v + e_{i}) - \Gamma_{\epsilon}(v))^{2} :
$$

Grad squared DGFF

Definition (DGFF)

Let $(\Gamma_{\epsilon}(v) : v \in U_{\epsilon})$ be the discrete GFF on U_{ϵ} :

 $\mathbb{E}[\Gamma_{\epsilon}(v)] = 0, \quad \mathbb{E}[\Gamma_{\epsilon}(v)\Gamma_{\epsilon}(u)] = G_{U_{\epsilon}}(u, v)$

where $G_{U_{\bm{\epsilon}}}(\cdot,\,\cdot)$ is the discrete harmonic Green's function with Dirichlet b.c.

Definition (Grad squared DGFF)

The field $(\Phi_{\epsilon}(v): v \in U_{\epsilon})$ is defined as

$$
\Phi_{\epsilon}(v) = \sum_{i=1}^{d} : \nabla_{i} \Gamma_{\epsilon}(x)^{2} := \sum_{i=1}^{d} : (\Gamma_{\epsilon}(v + e_{i}) - \Gamma_{\epsilon}(v))^{2} :
$$

We will work in $d \geq 2$ $(d = 1:$ manual calculations)

Grad squared DGFF Covariances

Call $[d] := \{1, ..., d\}$ *.*

$$
\mathsf{E}\left[\Phi_{\epsilon}\left(x_{\epsilon}\right)\Phi_{\epsilon}\left(y_{\epsilon}\right)\right] = 2\sum_{i,j\in[d]}\left(\nabla_{i}^{(1)}\nabla_{j}^{(2)}G_{U_{\epsilon}}\left(x_{\epsilon},\,y_{\epsilon}\right)\right)^{2}
$$

Main results

Convergence of cumulants

Theorem (Cipriani, Hazra, Rapoport, Ruszel 2023)

 L et \mathcal{E} be the set of coordinate vectors of \mathbb{R}^d . Let $\{x^{(1)},\ldots,x^{(k)}\}\subset U$. Let $S_{\rm cycl}^0(B)$ be the set of cyclic permutations of a set B without fixed points. If $x^{(i)} \neq x^{(j)}$ for all $i \neq j$, then

Main results

Convergence of cumulants

Theorem (Cipriani, Hazra, Rapoport, Ruszel 2023)

 L et \mathcal{E} be the set of coordinate vectors of \mathbb{R}^d . Let $\{x^{(1)},\ldots,x^{(k)}\}\subset U$. Let $S_{\rm cycl}^0(B)$ be the set of cyclic permutations of a set B without fixed points. If $x^{(i)} \neq x^{(j)}$ for all $i \neq j$, then

$$
\lim_{\epsilon \to 0} \epsilon^{-dk} \kappa \Big(\Phi_{\epsilon} \big(x_{\epsilon}^{(j)} \big) : j \in [k] \Big) =
$$

$$
2^{k-1} \sum_{\sigma \in S_{\text{cycl}}^0([k])} \sum_{\eta : [k] \to \mathcal{E}} \prod_{j=1}^k \partial_{\eta(j)}^{(1)} \partial_{\eta(\sigma(j))}^{(2)} g_U \big(x_{\epsilon}^{(j)}, x_{\epsilon}^{(\sigma(j))} \big)
$$

In d = 2 *the limit is conformally covariant with scale dimension* 2

Main results Comparison in $d = 2$

Main results

Comparison in $d = 2$

$$
\bullet \quad \text{Dirre:}
$$

$$
\lim_{\epsilon\rightarrow 0}\epsilon^{-2k}\kappa\Big(h_{U_\epsilon}\big(x_\epsilon^{(j)}\big):j\in[k]\Big)=-C^k\sum_{\sigma\in S_{\rm cycl}^0(\{k\})}\sum_{\eta:[k]\rightarrow \mathcal{E}}\prod_{j=1}^k\partial_{\eta(j)}^{(1)}\partial_{\eta(\sigma(j))}^{(2)}g_U\big(x^{(j)},x^{(\sigma(j))}\big)
$$

Main results

Comparison in $d = 2$

Dürre:

$$
\lim_{\epsilon \to 0} \epsilon^{-2k} \kappa \Big(h_{U_\epsilon} \big(x_\epsilon^{(j)} \big) : j \in [k] \Big) = - C^k \sum_{\sigma \in S_{\text{cycl}}^0([k])} \sum_{\eta : [k] \to \mathcal{E}} \prod_{j=1}^k \partial_{\eta(j)}^{(1)} \partial_{\eta(\sigma(j))}^{(2)} g_U \big(x^{(j)}, x^{(\sigma(j))} \big)
$$

 \bullet CHRR:

$$
\lim_{\epsilon\rightarrow 0}\epsilon^{-2k}\kappa\Big(\Phi_\epsilon\big(x^{(j)}_\epsilon\big):j\in[k]\Big)=2^{k-1}\sum_{\sigma\in S^0_{\mathrm{cycl}}([k])}\sum_{\eta:[k]\rightarrow \mathcal{E}}\prod_{j=1}^k\partial_{\eta(j)}^{(1)}\partial_{\eta(\sigma(j))}^{(2)}g_U(x^{(j)},x^{(\sigma(j))}\Big)
$$
Comparison in $d = 2$

\n- \n
$$
\lim_{\epsilon \to 0} \epsilon^{-2k} \kappa \left(h_{U_{\epsilon}}(x_{\epsilon}^{(j)}) : j \in [k] \right) = -C^k \sum_{\sigma \in S_{\text{cycl}}^0([k])} \sum_{\eta: [k] \to \mathcal{E}} \prod_{j=1}^k \vartheta_{\eta(j)}^{(1)} \vartheta_{\eta(\sigma(j))}^{(2)} g_U(x^{(j)}, x^{(\sigma(j))})
$$
\n
\n- \n G HRR:\n
$$
\lim_{\epsilon \to 0} \epsilon^{-2k} \kappa \left(\Phi_{\epsilon}(x_{\epsilon}^{(j)}) : j \in [k] \right) = 2^{k-1} \sum_{\sigma \in S_{\text{cycl}}^0([k])} \sum_{\eta: [k] \to \mathcal{E}} \prod_{j=1}^k \vartheta_{\eta(j)}^{(1)} \vartheta_{\eta(\sigma(j))}^{(2)} g_U(x^{(j)}, x^{(\sigma(j))})
$$
\n
\n- \n Corollary\n
$$
-2 \lim_{\epsilon \to 0} \epsilon^{-2k} \kappa \left(\frac{C}{2} \Phi_{\epsilon}(x_{\epsilon}^{(j)}) : j \in [k] \right) = \lim_{\epsilon \to 0} \epsilon^{-2k} \kappa \left(h_{U_{\epsilon}}(x_{\epsilon}^{(j)}) : j \in [k] \right)
$$
\n
\n

Convergence as random distribution

Consider for $f \in C_c^{\infty}(U)$, $U \subset \mathbb{R}^d$,

$$
\langle \Phi_{\epsilon}, f \rangle = \int_{U} \Phi_{\epsilon} (x_{\epsilon}) f(x) \, \mathrm{d}x.
$$

Convergence as random distribution

Consider for $f \in C_c^{\infty}(U)$, $U \subset \mathbb{R}^d$,

$$
\langle \Phi_{\epsilon}, f \rangle = \int_{U} \Phi_{\epsilon} (x_{\epsilon}) f(x) \, \mathrm{d}x.
$$

Theorem (C, Hazra, Rapoport, Ruszel 2022)

$$
\chi^{-1/2} \epsilon^{-d/2} \Phi_{\epsilon} \stackrel{d}{\longrightarrow} \text{white noise on } U,
$$

 \int_0^{∞} *(U) for any* $\alpha < -d/2$ *, and the constant* χ *is*

$$
\chi:=2\sum_{v\in\mathbb{Z}^d}\sum_{i,j\in[d]}\left(\nabla_i^{(1)}\nabla_j^{(2)}G_0(0,v)\right)^2\in(0,\,+\infty)
$$

where $G_0(\cdot, \cdot)$ *is the* $\left\{ \text{infinite-volume discrete Green's function} \mid n \geq 3 \right\}$ *potential kernel in d* = 2

Main results Comparison in $d = 2$

Dürre:

$$
\frac{\epsilon^{-1}}{\sqrt{\chi}}(h_{U_\epsilon}-\mathbb{E}[h_{U_\epsilon}])\overset{d}{\longrightarrow} \text{white noise}
$$

Comparison in $d = 2$

Dürre:

$$
\frac{\epsilon^{-1}}{\sqrt{\chi}}(h_{U_\epsilon}-\mathbb{E}[h_{U_\epsilon}])\overset{d}{\longrightarrow} \text{white noise}
$$

CHRR:

$$
\frac{\epsilon^{-1}}{\sqrt{\chi}}\Phi_{\epsilon} \stackrel{d}{\longrightarrow} \text{white noise}
$$

Comparison in $d = 2$

Dürre:

$$
\frac{\epsilon^{-1}}{\sqrt{\chi}}(h_{U_\epsilon}-\mathbb{E}[h_{U_\epsilon}])\overset{d}{\longrightarrow} \text{white noise}
$$

CHRR:

$$
\frac{\epsilon^{-1}}{\sqrt{\chi}}\Phi_{\epsilon} \stackrel{d}{\longrightarrow} \text{white noise}
$$

✓

Recap What we have so far

> Random distribution Scaling $\epsilon^{-d/2}$ and limit are the same as height-one field Cumulants Scaling *ϵ −d* and limit are the same as height-one field up to sign

Proofs Why white noise?

> Finite susceptibility ($\Longleftrightarrow \chi \in (0, +\infty)$) suggests CLT-type rescaling and WN convergence Bauerschmidt et al. (2014), Newman (1980)...

Proofs Why white noise?

- Finite susceptibility ($\Longleftrightarrow \chi \in (0, +\infty)$) suggests CLT-type rescaling and WN convergence Bauerschmidt et al. (2014), Newman (1980)...
- Kassel-Wu (2013) derive Gaussian fluctuations for models related to the spanning tree measure (reprove Dürre)

Proofs Why white noise?

- Finite susceptibility (*⇐⇒ χ ∈* (0*,* +*∞*)) suggests CLT-type rescaling and WN convergence Bauerschmidt et al. (2014), Newman (1980)...
- Kassel–Wu (2013) derive Gaussian fluctuations for models related to the spanning tree measure (reprove Dürre)
- We are not able to apply K–W's results directly, but this hints at a universality class of models related to the spanning tree measure via the transfer current matrix *T*(*·, ·*)

 $\mathbb{E} \left[\nabla_i \Gamma_{\epsilon}(v) \nabla_j \Gamma_{\epsilon}(u) \right] = T((v, v + e_i), (u, u + e_j))$

Proofs Useful facts: white noise

For $v, w \in U_{\epsilon}$ "away from the boundary"

Proofs Useful facts: white noise

For $v, w \in U_{\epsilon}$ "away from the boundary"

•
$$
E[\Phi_{\epsilon}(v)\Phi_{\epsilon}(w)] \leq c \cdot \begin{cases} |v-w|^{-2d} & v \neq w, \\ 1 & v = w. \end{cases}
$$

Proofs Useful facts: white noise

For $v, w \in U_{\epsilon}$ "away from the boundary"

•
$$
E[\Phi_{\epsilon}(v)\Phi_{\epsilon}(w)] \leq c \cdot \begin{cases} |v-w|^{-2d} & v \neq w, \\ 1 & v = w. \end{cases}
$$

\n• $|\nabla_i^{(1)}\nabla_j^{(2)}G_{U_{\epsilon}}(v,w) - \nabla_i^{(1)}\nabla_j^{(2)}G_0(v,w)| \leq c \epsilon^d,$

> $1.$ Φ_ϵ is tight in an appropriate local Besov-Hölder space using a tightness criterion of Furlan–Mourrat (2017)

- $1.$ Φ_ϵ is tight in an appropriate local Besov-Hölder space using a tightness criterion of Furlan–Mourrat (2017)
	- \blacktriangleright control of the summability of k -point functions

- $1.$ Φ_ϵ is tight in an appropriate local Besov-Hölder space using a tightness criterion of Furlan–Mourrat (2017)
	- \blacktriangleright control of the summability of k -point functions
	- ▶ use estimates for double derivatives of the Green's function in a domain

- $1.$ Φ_ϵ is tight in an appropriate local Besov-Hölder space using a tightness criterion of Furlan–Mourrat (2017)
	- \blacktriangleright control of the summability of k -point functions
		- ▶ use estimates for double derivatives of the Green's function in a domain
- 2. Determine the finite-dimensional distributions

- $1.$ Φ_ϵ is tight in an appropriate local Besov-Hölder space using a tightness criterion of Furlan–Mourrat (2017)
	- \blacktriangleright control of the summability of k -point functions
	- ▶ use estimates for double derivatives of the Green's function in a domain
- 2. Determine the finite-dimensional distributions
	- ▶ vanishing cumulants of order at least three

- $1.$ Φ_ϵ is tight in an appropriate local Besov-Hölder space using a tightness criterion of Furlan–Mourrat (2017)
	- \blacktriangleright control of the summability of k -point functions
	- ▶ use estimates for double derivatives of the Green's function in a domain
- 2. Determine the finite-dimensional distributions
	- ▶ vanishing cumulants of order at least three
	- \blacktriangleright the limiting covariance structure is the $L^2(U)$ inner product

Proofs Why these cumulants?

To answer, we need to look at the proof first...

Proofs Useful facts: cumulants

> $T\big((x_{\epsilon},x_{\epsilon}+e),(y_{\epsilon},y_{\epsilon}+e')\big)=\epsilon^d\,{\rm d} g_U|_{(x,y)}(e,\,e') + o(\epsilon^d)$ (Kassel–Wu, 2013).

We derive cumulants from *k*-point functions:

$$
\mathbb{E}\left[\prod_{j=1}^k \Phi_{\epsilon}(x_{\epsilon}^{(j)})\right] = \sum_{\pi \in \Pi([k])} \prod_{B \in \pi} \kappa\left(\Phi_{\epsilon}(x_{\epsilon}^{(j)}) : j \in B\right)
$$

We derive cumulants from *k*-point functions:

$$
\mathbb{E}\left[\prod_{j=1}^k \Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big)\right] = \sum_{\pi \in \Pi([k])} \prod_{B \in \pi} \kappa\left(\Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big) : j \in B\right)
$$

1. Decompose *k*-point functions as Feynman diagrams

We derive cumulants from *k*-point functions:

$$
\mathbb{E}\left[\prod_{j=1}^k \Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big)\right] = \sum_{\pi \in \Pi([k])} \prod_{B \in \pi} \kappa\left(\Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big) : j \in B\right)
$$

- 1. Decompose *k*-point functions as Feynman diagrams
- 2. Expand the products of covariances in terms of the transfer matrix

We derive cumulants from *k*-point functions:

$$
\mathbb{E}\left[\prod_{j=1}^k \Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big)\right] = \sum_{\pi \in \Pi([k])} \prod_{B \in \pi} \kappa\left(\Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big) : j \in B\right)
$$

- 1. Decompose *k*-point functions as Feynman diagrams
- 2. Expand the products of covariances in terms of the transfer matrix
- 3. Use the transfer matrix expansion

We derive cumulants from *k*-point functions:

$$
\mathbb{E}\left[\prod_{j=1}^k \Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big)\right] = \sum_{\pi \in \Pi([k])} \prod_{B \in \pi} \kappa\left(\Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big) : j \in B\right)
$$

- 1. Decompose *k*-point functions as
- 2. Expand the products of covariances in terms of the transfer matrix
- 3. Use the transfer matrix expansion

☞ For ASP the proof uses explicitly the relation with the spanning tree measure

We derive cumulants from *k*-point functions:

$$
\mathbb{E}\left[\prod_{j=1}^k \Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big)\right] = \sum_{\pi \in \Pi([k])} \prod_{B \in \pi} \kappa\left(\Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big) : j \in B\right)
$$

- 1. Decompose *k*-point functions as
- 2. Expand the products of covariances in terms of the transfer matrix
- 3. Use the transfer matrix expansion

☞ For ASP the proof uses explicitly the relation with the spanning tree measure ☞ Kassel–Wu generalize this to models related to the spanning tree measure conjecturing a universal and conformally covariant limit

We derive cumulants from *k*-point functions:

$$
\mathbb{E}\left[\prod_{j=1}^k \Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big)\right] = \sum_{\pi \in \Pi([k])} \prod_{B \in \pi} \kappa\left(\Phi_{\epsilon}\big(x_{\epsilon}^{(j)}\big) : j \in B\right)
$$

- 1. Decompose *k*-point functions as Feynman diagrams
- 2. Expand the products of covariances in terms of the transfer matrix
- 3. Use the transfer matrix expansion

☞ For ASP the proof uses explicitly the relation with the spanning tree measure ☞ Kassel–Wu generalize this to models related to the spanning tree measure conjecturing a universal and conformally covariant limit

Proofs Cumulants: another viewpoint

In the proof we (loosely) obtain that the *k*-point function is

$$
\sum_{\gamma \text{ FDoin }[2k]}\prod_{\big((x_{\epsilon}^{(j)},x_{\epsilon}^{(j)}+e),(x_{\epsilon}^{(m)},x_{\epsilon}^{(m)}+e')\big) \in \gamma}\epsilon^{-d}T\Big((x_{\epsilon}^{(j)},x_{\epsilon}^{(j)}+e),(x_{\epsilon}^{(m)},x_{\epsilon}^{(m)}+e')\Big)
$$

Proofs Cumulants: another viewpoint

In the proof we (loosely) obtain that the *k*-point function is

$$
\sum_{\gamma \text{ FDo} \text{ on }[2k] } \prod_{\left((x_\epsilon^{(j)}, x_\epsilon^{(j)} + e), (x_\epsilon^{(m)}, x_\epsilon^{(m)} + e') \right) \in \gamma} \underbrace{\epsilon^{-d} T \Big((x_\epsilon^{(j)}, x_\epsilon^{(j)} + e) \Big), (x_\epsilon^{(m)}, x_\epsilon^{(m)} + e') \Big)}_{\approx \ \partial_e \partial_{e'} g_U(x^{(j)}, x^{(m)})}
$$

Fermionic (or Grassmannian) calculus

Definition (Grassmanian variables)

Let $\{\xi_i, \bar{\xi}_i : i \in \Lambda\}$ be symbols that satisfy for all i, j $\xi_i \xi_j = -\xi_j \xi_i$, $\xi_i \bar{\xi}_j = -\bar{\xi}_j \xi_i$, $\bar{\xi}_i \bar{\xi}_j = -\bar{\xi}_j \bar{\xi}_i$

Fermionic (or Grassmannian) calculus

Definition (Grassmanian variables)

Let $\{\xi_i, \bar{\xi}_i : i \in \Lambda\}$ be symbols that satisfy for all i, j

$$
\xi_i \xi_j = -\xi_j \xi_i, \quad \xi_i \bar{\xi}_j = -\bar{\xi}_j \xi_i, \quad \bar{\xi}_i \bar{\xi}_j = -\bar{\xi}_j \bar{\xi}_i
$$

Example

Used in physics to model Fermi–Dirac statistics (opposed to Bose–Einstein statistics)

Definition (fGFF)

For every function F of $\{\boldsymbol{\xi},\bar{\boldsymbol{\xi}}\}=\{\xi_i,\,\bar{\xi}_i:i\in\Lambda\}$ the expectation of F under the fGFF is defined as

$$
[F]_{fGFF} = \int_{Berezin} d\bar{\xi} d\xi e^{(\xi, -\Delta_{\Lambda}\bar{\xi})} F.
$$

Definition (fGFF)

For every function F of $\{\boldsymbol{\xi},\bar{\boldsymbol{\xi}}\}=\{\xi_i,\,\bar{\xi}_i:i\in\Lambda\}$ the expectation of F under the fGFF is defined as

$$
[F]_{fGFF} = \int_{Berezin} d\bar{\xi} d\xi e^{(\xi, -\Delta_{\Lambda}\bar{\xi})} F.
$$

Compare with

$$
[F]_{DGFF}\propto \int_{\mathbb{R}^d} \mathrm{d}\varphi\, \mathrm{e}^{\frac{1}{4d}(\varphi,\,-\Delta_\Lambda \varphi)}\,F
$$

Definition (fGFF)

For every function F of $\{\boldsymbol{\xi},\bar{\boldsymbol{\xi}}\}=\{\xi_i,\,\bar{\xi}_i:i\in\Lambda\}$ the expectation of F under the fGFF is defined as

$$
[F]_{fGFF} = \int_{Berezin} d\bar{\xi} d\xi e^{(\xi, -\Delta_{\Lambda}\bar{\xi})} F.
$$

Compare with

$$
[F]_{DGFF}\propto \int_{\mathbb{R}^d} \mathrm{d}\boldsymbol{\varphi} \, \mathrm{e}^{\frac{1}{4d}(\boldsymbol{\varphi},\,-\Delta_\Lambda \boldsymbol{\varphi})} \, F
$$

Example

$$
[1]_{fGFF} = \int_{Ber} d\bar{\xi} d\xi e^{(\xi, -\Delta_{\Lambda}\bar{\xi})} = det(-\Delta_{\Lambda})
$$

Definition (fGFF)

For every function F of $\{\boldsymbol{\xi},\bar{\boldsymbol{\xi}}\}=\{\xi_i,\,\bar{\xi}_i:i\in\Lambda\}$ the expectation of F under the fGFF is defined as

$$
[F]_{fGFF} = \int_{Berezin} \mathrm{d}\bar{\xi} \mathrm{d}\xi \, \mathrm{e}^{(\xi,-\Delta_\Lambda \bar{\xi})} \, F.
$$

Compare with

$$
[F]_{DGFF}\propto \int_{\mathbb{R}^d} \mathrm{d} \varphi\, \mathrm{e}^{\frac{1}{4d}(\boldsymbol{\varphi},\ -Delta_\Lambda \boldsymbol{\varphi})}\, F
$$

Example

$$
[1]_{fGFF} = \int_{Ber} d\bar{\xi} d\xi e^{(\xi, -\Delta_{\Lambda}\bar{\xi})} = det(-\Delta_{\Lambda})
$$

$$
\int_{\mathbb{R}^d} d\varphi e^{\frac{1}{4d}(\varphi, -\Delta_{\Lambda}\varphi)} \propto (det(-\Delta_{\Lambda}))^{-1/2}
$$
"Fermionic gradient squared"

$$
\text{For } v \in \Lambda = U_{\epsilon}
$$

$$
X_v = \frac{1}{2d} \sum_{e \ni v \text{ edges}} \zeta(e)
$$

$$
\zeta(e) = \left(\xi_v - \xi_u\right) \left(\bar{\xi}_v - \bar{\xi}_u\right), \quad e = \{v, u\}
$$

Theorem (CCRR, 2023)

$$
\lim_{\epsilon \to 0} \epsilon^{-2n} \kappa \Big(h_{U_{\epsilon}}(v_{\epsilon}^{(1)}), \dots, h_{U_{\epsilon}}(v_{\epsilon}^{(n)}) \Big)
$$

$$
\lim_{\epsilon \to 0} \epsilon^{-2n} \kappa \Big(-CX_{v_{\epsilon}^{(1)}}, \dots, -CX_{v_{\epsilon}^{(n)}} \Big).
$$

Summary & open questions Summary

> We studied the scaling limit of Φ*^ϵ* as a random distribution and the scaling limit of its *k*-point functions/cumulants

As a random distribution the limit is WN as height-one field: common decay of correlations

Summary & open questions

Summary

We studied the scaling limit of Φ*^ϵ* as a random distribution and the scaling limit of its *k*-point functions/cumulants

- As a random distribution the limit is WN as height-one field: common decay of correlations
- The cumulants have the same limit as in the height-one field (up to sign) and conformal covariance property

Summary & open questions

Summary

We studied the scaling limit of Φ*^ϵ* as a random distribution and the scaling limit of its *k*-point functions/cumulants

- As a random distribution the limit is WN as height-one field: common decay of correlations
- The cumulants have the same limit as in the height-one field (up to sign) and conformal covariance property
- \bullet the Fermionic free field kind of identifies the height-one field and gives an alternative the gradient free field squared.

Can one make sense of the scaling limit which captures the correlations?

- Can one make sense of the scaling limit which captures the correlations?
- what about other height fields?

- Can one make sense of the scaling limit which captures the correlations?
- what about other height fields?
- Can one obtain other limits (than white noise) for these fields?

- Can one make sense of the scaling limit which captures the correlations?
- what about other height fields?
- Can one obtain other limits (than white noise) for these fields?

 \bullet

Thank you!