Robust Pricing using Martingale Optimal Transport SPDE-2024, IIT-Madras

Purba Banerjee

Department of Mathematics Indian Institute of Science, Bangalore

June 3, 2024

भारतीय विज्ञान संस्थान

Introduction

- Derivative pricing in finance can be divided into two major categories:
 - 1 Model-based pricing.
 - 2 Robust/model-independent pricing.
- Model based pricing, as the name suggests, involves pricing of a derivative, given certain assumptions on the underlying asset following some model. Examples- *Black-Scholes* model, *Heston* model, *Merton Jump-Diffusion* model.
- The quantity of interest in any form of pricing is the valuation of the underlying risk-neutral densities, under no-arbitrage conditions.
- One of the most pioneering works in this regard was by Breeden and Litzenberger (1978).

Breeden and Litzenberger's result

- Let C(S, t, K, T) denote the time-t price of a European call with strike K and maturity T.
- The probability density function of the asset price under a risk-neutral measure Q, evaluated at the future price level K and the future time T, conditional on the stock price starting at level S at an earlier time t, is denoted by q(S, t, K, T).
- Breeden and Litzenberger (1978) proved that the risk-neutral density is related to the second strike derivative of the call pricing function as follows,

$$q(S, t, K, T) = e^{r(T-t)} \frac{\partial^2 C}{\partial K^2}(S, t, K, T).$$
(1)

Optimal Transport

- The *optimal transport* (OT) problem is concerned with transferring mass from one location to another in such a way as to optimize a given criterion.
- Rephrased mathematically, and for simplicity considering the one-dimensional case, we are given two probability distributions μ and ν on $\mathbb R$ and seek to minimize

$$\int_{\mathbb{R}^2} c(x, y) \mathbb{P}(dx, dy),$$
(2)

among all probability measures \mathbb{P} , also known as *transport plans*, such that

$$\mathbb{P}[E imes \mathbb{R}] = \mu[E]$$
 and $\mathbb{P}[\mathbb{R} imes E] = \nu[E]$, for all $E \in \mathcal{B}(\mathbb{R})$, (3)

where $c: \mathbb{R}^2 \to \mathbb{R}$ is a measurable cost function.

• Example: An Asian option with pay-off $c(x, y) = (\frac{1}{2}(x + y) - K)^+$, with K being the strike price at maturity T, and x, y denoting the underlying asset prices at times $0 < T_1 < T_2 = T$, respectively.

Optimal Transport

- In the absolutely continuous case, i.e., $\mu(dx) = \rho(x)dx$ and $\nu(dy) = \sigma(y)dy$, Benamou and Brenier (2000) proposed a numerical scheme for the quadratic distance function $c(x, y) = (x - y)^2$ using an equivalent formulation arising from fluid mechanics.
- In the purely discrete case, i.e. $\mu(dx) = \sum_{i=1}^{m} \alpha_i \delta_{x_i}(dx)$ and $\nu(dy) = \sum_{j=1}^{n} \beta_j \delta_{y_j}(dy)$, the OT problem reduces to a linear programming (LP) problem. It can be computed using the iterative Bregman projection as shown in Benamou et al. (2015).
- In the semi-discrete case, i.e. $\mu(dx) = \rho(x)dx$ and $\nu(dy) = \sum_{j=1}^{n} \beta_j \delta_{y_j}(dy)$, Lévy et al. (2015) adopted a computational geometry approach to the cost $c(x, y) = (x - y)^2$ and solved the OT problem utilizing Laguerre's tessellations.

Martingale Optimal Transport

- Recently, an additional constraint has been taken into account, which leads to the so-called martingale optimal transport (MOT) problem.
- More precisely, the two given measures μ and ν describe the initial and final distributions of stock prices.
- These distributions can be recovered from market prices of traded call/put options.
- Calibrated market models are then identified by martingales with these prescribed marginals, i.e. transport plans $\mathbb P$ which further satisfy

$$\mathbb{E}_{\mathbb{P}}[Y|X] = X \tag{4}$$

- The MOT problem aims at maximizing the integral (2) overall \mathbb{P} , still named transport plans, satisfying the constraints (3) and (4), and it corresponds to the model-independent price for option c.
- This methodology was pioneered by Beiglböck et al. (2013).

LP formulation for MOT problems

• When the underlying marginal distributions are discrete, i.e. $\mu(dx) = \sum_{i=1}^{m} \alpha_i \delta_{x_i}(dx)$ and $\nu(dy) = \sum_{j=1}^{n} \beta_j \delta_{y_j}(dy)$, the MOT problem is equivalent to the following LP problem:

$$\max_{(p_{i,j})_{1 \le i \le m, 1 \le j \le n} \in \mathbb{R}_{+}^{m}} \sum_{i=1}^{m} \sum_{j=1}^{n} p_{i,j} c(x_{i}, y_{j}) \text{ s.t. } \sum_{j=1}^{n} p_{i,j} = \alpha_{i}, \text{ for } i = 1, ..., m,$$
$$\sum_{i=1}^{m} p_{i,j} = \beta_{j}, \text{ for } j = 1, ..., n,$$
$$\sum_{j=1}^{n} p_{i,j} y_{j} = \alpha_{i} x_{i}, \text{ for } i = 1, ..., m.$$
(5)

- Davis et al. (2014) developed such LP formulation, where instead of the marginal constraint ν , only a finite number of expectation constraints are given.
- For a convex reward function, this leads to optimizers with finite support.
- In order to generalize this approach, a natural direction would be to try approximating the MOT problem for (μ, ν) with the LP problem mentioned above, for finitely supported (μ^n, ν^n) which are 'close' to (μ, ν) .
- One would encounter two main obstacles while working in that direction:
 - **1** General continuity results of the MOT problem are difficult to establish.
 - 2 Even if (μ, ν) admits a martingale transport plan, in dimensions d > 1, the construction of a discrete approximation (μⁿ, νⁿ) which also satisfies this, may be quite involved.
- Both of these issues were addressed in Guo and Obłój (2019), and forms the basis of this talk.

Outline of their results

- The authors provide an approximation approach for solving systematically N-period MOT problems on \mathbb{R}^d , with $N \ge 2$ and $d \ge 1$.
- Their approximation of the original problem relies on a discretization of the marginal distributions combined with a suitable relaxation of the martingale constraint leading to a sequence of LP problems.
- A proof of the convergence of this sequence is given.
- Results for the convergence speed are obtained when restricted to N = 2 and d = 1.

Preliminaries

- For a given set E, we denote by E^k its k-fold product.
- If E is Polish, then B(E) denotes its Borel σ-field and P(E) is the set of probability measures on (E, B(E)) which admit a finite first moment.
- Let $\Omega := \mathbb{R}^d$ with its elements denoted by $\mathbf{x} = (x_1, x_2, ..x_d)$ and $\mathcal{P} := \mathcal{P}(\Omega)$. Throughout, the Euclidean space \mathbb{R}^d is endowed with the l_1 norm $|\cdot|$, i.e. $|\mathbf{x}| := \sum_{i=1}^d |x_i|$.
- Define Λ to be the space of Lipschitz functions on ℝ^d and, given f ∈ Λ, denote by Lip(f) its Lipschitz constant on ℝ^d.
- For each L > 0, let $\Lambda_L \subset \Lambda$ be the subspace of functions f with $Lip(f) \leq L$.

Preliminaries

- We consider the coordinate process (S_k)_{1≤k≤N}, i.e. S_k(x₁, x₂, ..., x_N) ∈ Ω_N and its natural filtration (F_k)_{1≤k≤N}, i.e. F_k := σ(S₁,...S_k).
- From a financial viewpoint, Ω^N models the collection of all possible trajectories for the price evolution of *d* stocks, where *N* is the number of trading dates.
- Given a vector of probability measures μ = (μ_k)_{1≤k≤N} ∈ P^N, define the set of transport plans with the marginal distributions μ₁, ..., μ_N by

$$\mathcal{P}(\boldsymbol{\mu}) := \{ \mathbb{P} \in \mathcal{P}(\Omega^{N}) : \mathbb{P} \circ S_{k}^{-1} = \mu_{k}, \text{ for } k = 1, .., N \},$$

where $\mathbb{P} \circ S_k^{-1}$ denotes the push forward of \mathbb{P} via the map $S_k : \Omega^N \to \Omega$.

Wasserstein distance

• The Wasserstein distance in terms S_k is given by

$$\mathcal{W}(\mu,\nu) := \inf_{\mathbb{P}\in\mathcal{P}(\mu,\nu)} \mathbb{E}_{\mathbb{P}}[|S_1 - S_2|] = \sup_{f\in\Lambda_1} \left\{ \int_{\mathbb{R}^d} f(x)\mu(x)dx - \int_{\mathbb{R}^d} f(x)\nu(x)dx \right\}$$
(6)

- The probability space \mathcal{P} , equipped with the metric \mathcal{W} , is a Polish space.
- Further, for any $(\mu^n)_{n\geq 1} \subset \mathcal{P}$ and $\mu \in \mathcal{P}, \mathcal{W}(\mu^n, \mu) \to 0$ holds if and only if

$$\mu^n \xrightarrow{\mathcal{L}} \mu \quad ext{and} \quad \int_{\mathbb{R}^d} |m{x}| \mu^n(dx) o \int_{\mathbb{R}^d} |m{x}| \mu(dx),$$

where $\mathcal L$ represents the weak convergence of probability measures.

- The space \mathcal{W} is endowed with the product metric $\mathcal{W}^{\oplus}(\mu, \nu) := \sum_{k=1}^{N} \mathcal{W}(\mu_k, \nu_k)$, for all $\mu, \nu \in \mathcal{P}^N$.
- Then \mathcal{P}^N is Polish with respect to \mathcal{W}^{\oplus} .

We first define an ϵ -approximating measure to introduce the main results.

Definition

For any $\epsilon \geq 0$, a probability measure $\mathbb{P} \in \mathcal{P}(\Omega^N)$ is said to be an ϵ -approximating martingale measure if for each k = 1, ..N - 1

$$\mathbb{E}_{\mathbb{P}}\left[\left|\mathbb{E}_{\mathbb{P}}[S_{k+1}|\mathcal{F}_{k}] - S_{k}\right|\right] \leq \epsilon,$$
(7)

Relaxed MOT

- Given ε ≥ 0, let M_ε(μ) ⊂ P(μ) be the subset containing all εapproximating martingale measures.
- For a measurable function $c: \Omega^N \to \mathbb{R}$, the relaxed MOT problem is defined by

$$P_{\epsilon}(\boldsymbol{\mu}) := \sup_{\mathbb{P} \in \mathcal{M}_{\epsilon}(\boldsymbol{\mu})} \mathbb{E}_{\mathbb{P}}[c(S_1, ..., S_N)],$$
(8)

where we set by convention $\mathcal{P}_{\epsilon}(\mu):=-\infty$ whenever $\mathcal{M}_{\mu}(\mu)=\emptyset.$

• We denote $\mathcal{P}_{\epsilon}^{\preceq} \subset \mathcal{P}^{N}$ the collection of measures μ such that $\mathcal{M}(\mu) \neq \emptyset$. For $\epsilon = 0$, we drop the subscript and denote by $\mathcal{P}^{\preceq} \equiv \mathcal{P}_{\epsilon}^{\preceq}, \mathcal{M}(\mu) \equiv \mathcal{P}_{0}(\mu)$, etc.

Main Result

Theorem

Fix $\mu \in \mathcal{P}^{\preceq}$. Let $(\mu^n)_{n \geq 1} \subset \mathcal{P}^N$ be a sequence converging to μ under \mathcal{W}^{\oplus} . Then, for all $n \geq 1$, $\mu^n \in \mathcal{P}_{r_n}^{\preceq}$ with $r_n := \mathcal{W}^{\oplus}(\mu^n, \mu)$. Assume further *c* is Lipschitz.

• For any sequence $(\epsilon_n)_{n\geq 1}$ converging to zero such that $\epsilon_n \geq r_n$ for all $n\geq 1$, one has

$$\lim_{n\to\infty}P_{\epsilon_n}(\mu^n)=P(\mu).$$

 Por each n ≥ 1, P_{ε_n}(μⁿ) admits an optimizer P_n ∈ M_{ε_n}(μⁿ), i.e., P_{ε_n}(μⁿ) = E_{P_n}[c]. The sequence (P_n)_{n≥1} is tight, and every limit point must be an optimizer for P(μ). In particular, (P_n)_{n≥1} converges weakly whenever P(μ) has a unique optimizer.

Remark

- **1** By a theorem in Strassen (1965) we have $\mu \in \mathcal{P}^{\preceq}$ if and only if $\mu_k \preceq \mu_{k+1}$ for k = 1, ..., N 1, or namely, $\int fd\mu_k \leq \int fd\mu_{k+1}$ holds for all convex functions $f \in \Lambda$ and k = 1, ..., N 1. In addition, it follows by definition that $\mathcal{P}_{r_n}^{\preceq} \subset \mathcal{P}^N$ is convex and closed under \mathcal{W}^{\oplus} , and $\mathcal{M}(\mu) \subset \mathcal{M}_{\epsilon}(\mu)$ for all $\epsilon \geq 0$.
- **2** As mentioned earlier, we would like to approximate $P(\mu)$ by $P(\mu^n)$ with finitely supported measures $\mu_1^n, ..., \mu_N^n$, since the latter reduces to an LP problem.
- ③ The Lipschitz assumption can be slightly weakened. Let E ⊆ ℝ^d be a closed subset such that supp(µⁿ_k) ⊆ E for all n ≥ 1 and k = 1, ..., N. Then it suffices to assume in Theorem 1 that c, restricted to E^N, is Lipschitz.

LP formulation for finitely supported marginals

- The following Corollary shows that $P_{\epsilon_n}(\mu^n)$ is equivalent to an LP problem.
- Henceforth, $P_{\epsilon_n}(\mu^n)$ will denote the approximating LP problem of $P(\mu)$.

Corollary

Let $\mu^n = (\mu^n_k)_{1 \le k \le N}$ be chosen such that each μ^n_k has finite support, i.e.

$$\mu_k^n(dx) = \sum_{i_k \in I_k} \alpha_{i_k}^k \delta_{x_{i_k}^k}(dx),$$

where $I_k = \{1, ..., n(k)\}$ labels the support supp (μ_k^n) . Denote by $p = (p_{i_1,...i_N})_{i_1 \in I_1,...,i_N \in I_N}$ the elements of \mathbb{R}^D_+ with $D := \prod_{k=1}^N n(k)$, then $P_{\epsilon_n}(\mu^n)$ can be rewritten as an LP problem.

LP formulation for finitely supported marginals

PROOF. By assumption, every element $\mathbb{P} \in \mathcal{M}_{\epsilon_n}(\mu^n)$ can be identified by some $p \in \mathbb{R}^D_+$. Therefore, $P_{\epsilon_n}(\mu^n)$ turns to be the optimization problem below

$$\max_{p \in \mathbb{R}_{+}^{D}} \sum_{i_{1},..,i_{N}} p_{i_{1},..,i_{N}} c(x_{i_{1}}^{1},...,X_{i_{N}}^{N}) \\
\sum_{i_{1},..,i_{k-1},i_{k+1},...,i_{N}} p_{i_{1},..,i_{N}} = \alpha_{i_{k}}^{k}, \text{ for } i_{k} \in I_{k} \text{ and } k = 1,...,N, \\
\sum_{i_{1},...,i_{k}} \left| \sum_{i_{k+1},..,i_{N}} p_{i_{1},..,i_{N}} (x_{i_{k+1}}^{k+1} - x_{i_{k}}^{k}) \right| \leq \epsilon_{n}, \text{ for } k = 1,...,N.$$
(9)

The optimization problem (9) is not an LP formulation. However, by adding slack variables $(\delta_{i_1,i...,i_k,j}^k)_{i_1 \in I_1,...,i_k \in I_k, j \in J} \in \mathbb{R}^{D_k}_+$ with $J := \{1,...,d\}$ and $D_k := d \prod_{r=1}^k n(r)$, (9) is equivalent to the following LP problem.

LP formulation for finitely supported marginals

$$\max_{\substack{p \in \mathbb{R}^{D}_{+}, \delta^{1} \in \mathbb{R}^{D_{1}}_{+}, \delta^{N-1} \in \mathbb{R}^{D_{N-1}}_{+}} \sum_{i_{1}, \dots, i_{N}} p_{i_{1}, \dots, i_{N}} c(x_{i_{1}}^{1}, \dots, X_{i_{N}}^{N}) } \\ \sum_{\substack{i_{1}, \dots, i_{k-1}, i_{k+1}, \dots, i_{N} \\ -\delta_{i_{1}, \dots, i_{k}, j}^{k} \leq \sum_{i_{k+1}, \dots, i_{N}} p_{i_{1}, \dots, i_{N}} (x_{i_{k+1}}^{k+1} - x_{i_{k}}^{k}) \leq \delta_{i_{1}, \dots, i_{k}, j}^{k}, \text{ for } i_{k} \in I_{k}, j \in J \text{ and } k = 1, \dots, N, \\ \sum_{i_{1}, \dots, i_{k}, j} \delta_{i_{1}, \dots, i_{k}, j}^{k} \leq \epsilon_{n}, \text{ for } k = 1, \dots, N - 1.$$

where we recall $x_{i_k}^k = (x_{i_k,1}^k, ..., x_{i_k,d}^k)$.

Convergence of the finitely supported marginals

The following theorem gives the convergence rate for N = 2 and d = 1.

Theorem

Let N = 2 and d = 1, or equivalently, $\mu = (\mu, \nu)$ and $c : \mathbb{R}^2 \to \mathbb{R}$. In addition to the conditions of Theorem 1, we assume that $\sup_{(x,y)\in\mathbb{R}^2} |\partial_{yy}^2 c(x,y)| < \infty$ and ν has a finite second moment. Then there exists C > 0 such that

$$|P_{\epsilon_n}(\mu^n,\nu^n) - P(\mu,\nu)| \le C \inf_{R\ge 0} \lambda_n(R), \text{ for all } n\ge 1.$$

where $\lambda_n: (0,\infty) \to \mathbb{R}$ is given by

$$\lambda_n(R) := (R+1)\epsilon_n + \int_{(-\infty,-R)\cup(R,\infty)} (|y|-R)^2 \nu(dy).$$

In particular, the convergence rate is proportional to ϵ_n if supp (ν) is bounded.

Case for finitely many option prices

Remark

In general, the distributions $\mu_1, ..., \mu_N$ will not be fully specified by the market when $d \ge 2$. For k = 1, ..., N, let $S_k := (S_k^{(1)}, ..., S_k^{(d)})$, where $S_k^{(i)}$ stands for the price of the *i*th stock at time k. Then, in practice, only prices of call options $(S_k^{(i)} - K)^+$, or put options $(K - S_k^{(i)})^+$, for a finite set of strikes K are actively traded in the market. Even assuming call options are quotes for all possible strikes K only yields the distributions $\mu_{k,i}$ of S_k^i . Therefore, this leads to a modified optimization problem. Denote $\vec{\mu}_k := (\mu_{k,1}, ..., \mu_{k,d})$ and $\vec{\mu} := (\vec{\mu}_k)_{1 \le k \le N}$, and let $\mathcal{M}_{\epsilon}(\vec{\mu})$ be the set of ϵ - approximating martingale measures \mathbb{P} satisfying $\mathbb{P}(S_k^i)^{-1} = \mu_{k,i}$, for k = 1, ..., N and i = 1, ..., d. Then, we define the optimization problem by

$$P_{\epsilon}(\vec{\mu}) := \sup_{\mathbb{P} \in \mathcal{M}_{\epsilon}(\vec{\mu})} \mathbb{E}_{\mathbb{P}}[c(S_1, .., S_N)].$$
(10)

The problem (10), with $\epsilon = 0$, was first introduced in Lim (2024) and was called *multi-martingale optimal transport*.

References

- Beiglböck, M., Henry-Labordere, P., and Penkner, F. (2013). Model-independent bounds for option prices—a mass transport approach. *Finance and Stochastics*, 17:477–501.
- Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. *Numerische Mathematik*, 84(3):375–393.
- Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. (2015). Iterative bregman projections for regularized transportation problems. *SIAM Journal on Scientific Computing*, 37(2):A1111–A1138.
- Breeden, D. T. and Litzenberger, R. H. (1978). Prices of state-contingent claims implicit in option prices. *Journal of business*, pages 621–651.
- Davis, M., Obłój, J., and Raval, V. (2014). Arbitrage bounds for prices of weighted variance swaps. *Mathematical Finance*, 24(4):821–854.
- Guo, G. and Obłój, J. (2019). Computational methods for martingale optimal transport problems. *The Annals of Applied Probability*, 29(6):3311–3347.
- Lévy, B., Bastien, F., and Magnien, J. (2015). B. lévy-a numerical algorithm for I2 semi-discrete optimal transport in 3d.

Lim, T. (2024). Geometry of vectorial martingale optimal transportations and duality. <u>Mathematical Programming</u> 204(1):340–383 Purba Baneree (Department of Mathematics Indian Robust Pricing using Martingale Optimal Transport June 3, 2024