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Introduction

• Derivative pricing in finance can be divided into two major categories:
1 Model-based pricing.
2 Robust/model-independent pricing.

• Model based pricing, as the name suggests, involves pricing of a derivative,
given certain assumptions on the underlying asset following some model.
Examples- Black-Scholes model, Heston model, Merton Jump-Diffusion
model.

• The quantity of interest in any form of pricing is the valuation of the
underlying risk-neutral densities, under no-arbitrage conditions.

• One of the most pioneering works in this regard was by Breeden and
Litzenberger (1978).
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Breeden and Litzenberger’s result

• Let C(S, t, K , T ) denote the time-t price of a European call with strike K
and maturity T .

• The probability density function of the asset price under a risk-neutral
measure Q, evaluated at the future price level K and the future time T ,
conditional on the stock price starting at level S at an earlier time t, is
denoted by q(S, t, K , T ).

• Breeden and Litzenberger (1978) proved that the risk-neutral density is
related to the second strike derivative of the call pricing function as follows,

q(S, t, K , T ) = er(T−t) ∂2C
∂K 2 (S, t, K , T ). (1)
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Optimal Transport

• The optimal transport (OT) problem is concerned with transferring mass
from one location to another in such a way as to optimize a given criterion.

• Rephrased mathematically, and for simplicity considering the one-dimensional
case, we are given two probability distributions µ and ν on R and seek to
minimize ∫

R2
c(x , y)P(dx , dy), (2)

among all probability measures P, also known as transport plans, such that

P[E × R] = µ[E ] and P[R × E ] = ν[E ], for all E ∈ B(R), (3)

where c : R2 → R is a measurable cost function.
• Example: An Asian option with pay-off c(x , y) = ( 1

2 (x + y) − K )+, with K
being the strike price at maturity T , and x , y denoting the underlying asset
prices at times 0 < T1 < T2 = T , respectively.
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Optimal Transport

• In the absolutely continuous case, i.e., µ(dx) = ρ(x)dx and ν(dy) = σ(y)dy ,
Benamou and Brenier (2000) proposed a numerical scheme for the quadratic
distance function c(x , y) = (x − y)2 using an equivalent formulation arising
from fluid mechanics.

• In the purely discrete case, i.e. µ(dx) =
∑m

i=1 αiδxi (dx) and
ν(dy) =

∑n
j=1 βjδyj (dy), the OT problem reduces to a linear programming

(LP) problem. It can be computed using the iterative Bregman projection as
shown in Benamou et al. (2015).

• In the semi-discrete case, i.e. µ(dx) = ρ(x)dx and ν(dy) =
∑n

j=1 βjδyj (dy),
Lévy et al. (2015) adopted a computational geometry approach to the cost
c(x , y) = (x − y)2 and solved the OT problem utilizing Laguerre’s
tessellations.
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Martingale Optimal Transport

• Recently, an additional constraint has been taken into account, which leads
to the so-called martingale optimal transport (MOT) problem.

• More precisely, the two given measures µ and ν describe the initial and final
distributions of stock prices.

• These distributions can be recovered from market prices of traded call/put
options.

• Calibrated market models are then identified by martingales with these
prescribed marginals, i.e. transport plans P which further satisfy

EP[Y |X ] = X (4)

• The MOT problem aims at maximizing the integral (2) overall P, still named
transport plans, satisfying the constraints (3) and (4), and it corresponds to
the model-independent price for option c.

• This methodology was pioneered by Beiglböck et al. (2013).
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LP formulation for MOT problems

• When the underlying marginal distributions are discrete, i.e.
µ(dx) =

∑m
i=1 αiδxi (dx) and ν(dy) =

∑n
j=1 βjδyj (dy), the MOT problem is

equivalent to the following LP problem:

max
(pi,j )1≤i≤m,1≤j≤n∈Rmn

+

m∑
i=1

n∑
j=1

pi,jc(xi , yj) s.t.
n∑

j=1
pi,j = αi , for i = 1, .., m,

m∑
i=1

pi,j = βj , for j = 1, .., n,

n∑
j=1

pi,jyj = αixi , for i = 1, .., m.

(5)
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• Davis et al. (2014) developed such LP formulation, where instead of the
marginal constraint ν, only a finite number of expectation constraints are
given.

• For a convex reward function, this leads to optimizers with finite support.
• In order to generalize this approach, a natural direction would be to try

approximating the MOT problem for (µ, ν) with the LP problem mentioned
above, for finitely supported (µn, νn) which are ’close’ to (µ, ν).

• One would encounter two main obstacles while working in that direction:
1 General continuity results of the MOT problem are difficult to establish.
2 Even if (µ, ν) admits a martingale transport plan, in dimensions d > 1, the

construction of a discrete approximation (µn, νn) which also satisfies this, may
be quite involved.

• Both of these issues were addressed in Guo and Ob lój (2019), and forms the
basis of this talk.
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Outline of their results

• The authors provide an approximation approach for solving systematically
N−period MOT problems on Rd , with N ≥ 2 and d ≥ 1.

• Their approximation of the original problem relies on a discretization of the
marginal distributions combined with a suitable relaxation of the martingale
constraint leading to a sequence of LP problems.

• A proof of the convergence of this sequence is given.
• Results for the convergence speed are obtained when restricted to N = 2 and

d = 1.
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Preliminaries

• For a given set E , we denote by E k its k− fold product.
• If E is Polish, then B(E ) denotes its Borel σ−field and P(E ) is the set of

probability measures on (E , B(E )) which admit a finite first moment.
• Let Ω := Rd with its elements denoted by x = (x1, x2, ..xd ) and P := P(Ω).

Throughout, the Euclidean space Rd is endowed with the l1 norm | · |, i.e.
|x| :=

∑d
i=1 |xi |.

• Define Λ to be the space of Lipschitz functions on Rd and, given f ∈ Λ,
denote by Lip(f ) its Lipschitz constant on Rd .

• For each L > 0, let ΛL ⊂ Λ be the subspace of functions f with Lip(f ) ≤ L.
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Preliminaries

• We consider the coordinate process (Sk)1≤k≤N , i.e. Sk(x1, x2, ..., xN) ∈ ΩN
and its natural filtration (Fk)1≤k≤N , i.e. Fk := σ(S1, ...Sk).

• From a financial viewpoint, ΩN models the collection of all possible
trajectories for the price evolution of d stocks, where N is the number of
trading dates.

• Given a vector of probability measures µ = (µk)1≤k≤N ∈ PN , define the set
of transport plans with the marginal distributions µ1, .., µN by

P(µ) := {P ∈ P(ΩN) : P ◦ S−1
k = µk , for k = 1, .., N},

where P ◦ S−1
k denotes the push forward of P via the map Sk : ΩN → Ω.
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Wasserstein distance

• The Wasserstein distance in terms Sk is given by

W(µ, ν) := inf
P∈P(µ,ν)

EP[|S1 − S2|] = sup
f ∈Λ1

{ ∫
Rd

f (x)µ(x)dx −
∫
Rd

f (x)ν(x)dx
}

,

(6)

• The probability space P, equipped with the metric W, is a Polish space.
• Further, for any (µn)n≥1 ⊂ P and µ ∈ P, W(µn, µ) → 0 holds if and only if

µn L−→ µ and
∫
Rd

|x|µn(dx) →
∫
Rd

|x|µ(dx),

where L represents the weak convergence of probability measures.
• The space W is endowed with the product metric

W⊕(µ, ν) :=
∑N

k=1 W(µk , νk), for all µ, ν ∈ PN .
• Then PN is Polish with respect to W⊕.
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ϵ−approximating measure

We first define an ϵ−approximating measure to introduce the main results.

Definition

For any ϵ ≥ 0, a probability measure P ∈ P(ΩN) is said to be an ϵ−approximating
martingale measure if for each k = 1, ..N − 1

EP

[∣∣∣∣EP[Sk+1|Fk ] − Sk

∣∣∣∣
]

≤ ϵ, (7)
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Relaxed MOT

• Given ϵ ≥ 0, let Mϵ(µ) ⊂ P(µ) be the subset containing all ϵ−
approximating martingale measures.

• For a measurable function c : ΩN → R, the relaxed MOT problem is defined
by

Pϵ(µ) := sup
P∈Mϵ(µ)

EP[c(S1, ..., SN)], (8)

where we set by convention Pϵ(µ) := −∞ whenever Mµ(µ) = ∅.
• We denote P⪯

ϵ ⊂ PN the collection of measures µ such that M(µ) ̸= ∅. For
ϵ = 0, we drop the subscript and denote by P⪯ ≡ P⪯

ϵ , M(µ) ≡ P0(µ), etc.

Purba Banerjee ( Department of Mathematics Indian Institute of Science, Bangalore )Robust Pricing using Martingale Optimal Transport June 3, 2024 14 / 22



Main Result

Theorem

Fix µ ∈ P⪯. Let (µn)n≥1 ⊂ PN be a sequence converging to µ under W⊕. Then,
for all n ≥ 1, µn ∈ P⪯

rn
with rn := W⊕(µn, µ). Assume further c is Lipschitz.

1 For any sequence (ϵn)n≥1 converging to zero such that ϵn ≥ rn for all n ≥ 1,
one has

lim
n→∞

Pϵn (µn) = P(µ).

2 For each n ≥ 1, Pϵn (µn) admits an optimizer Pn ∈ Mϵn (µn), i.e.,
Pϵn (µn) = EPn [c]. The sequence (Pn)n≥1 is tight, and every limit point must
be an optimizer for P(µ). In particular, (Pn)n≥1 converges weakly whenever
P(µ) has a unique optimizer.
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Remark
1 By a theorem in Strassen (1965) we have µ ∈ P⪯ if and only if µk ⪯ µk+1

for k = 1, .., N − 1, or namely,
∫

fdµk ≤
∫

fdµk+1 holds for all convex
functions f ∈ Λ and k = 1, .., N − 1,. In addition, it follows by definition that
P⪯

rn
⊂ PN is convex and closed under W⊕, and M(µ) ⊂ Mϵ(µ) for all

ϵ ≥ 0.

2 As mentioned earlier, we would like to approximate P(µ) by P(µn)
with finitely supported measures µn

1, ..., µn
N , since the latter reduces to

an LP problem.
3 The Lipschitz assumption can be slightly weakened. Let E ⊆ Rd be a closed

subset such that supp(µn
k) ⊆ E for all n ≥ 1 and k = 1, .., N. Then it suffices

to assume in Theorem 1 that c, restricted to EN , is Lipschitz.
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LP formulation for finitely supported marginals

• The following Corollary shows that Pϵn (µn) is equivalent to an LP problem.
• Henceforth, Pϵn (µn) will denote the approximating LP problem of P(µ) .

Corollary
Let µn = (µn

k)1≤k≤N be chosen such that each µn
k has finite support, i.e.

µn
k(dx) =

∑
ik ∈Ik

αk
ik δxk

ik
(dx),

where Ik = {1, .., n(k)} labels the support supp(µn
k). Denote by

p = (pi1,..iN )i1∈I1,..,iN ∈IN the elements of RD
+ with D :=

∏N
k=1 n(k), then Pϵn (µn)

can be rewritten as an LP problem.
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LP formulation for finitely supported marginals

PROOF. By assumption, every element P ∈ Mϵn (µn) can be identified by some
p ∈ RD

+. Therefore, Pϵn (µn) turns to be the optimization problem below

max
p∈RD

+

∑
i1,..,iN

pi1,..,iN c(x1
i1 , ..., X N

iN )

∑
i1,..,ik−1,ik+1,..,iN

pi1,..,iN = αk
ik , for ik ∈ Ik and k = 1, ..., N,

∑
i1,..,ik

∣∣∣∣ ∑
ik+1,..,iN

pi1,..,iN (xk+1
ik+1

− xk
ik )

∣∣∣∣ ≤ ϵn, for k = 1, ..., N.

(9)

The optimization problem (9) is not an LP formulation. However, by adding slack
variables (δk

i1,i..,ik ,j)i1∈I1,...,ik ∈Ik ,j∈J ∈ RDk
+ with J := {1, .., d} and

Dk := d
∏k

r=1 n(r), (9) is equivalent to the following LP problem.
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LP formulation for finitely supported marginals

max
p∈RD

+,δ1∈RD1
+ ,δN−1∈R

DN−1
+

∑
i1,..,iN

pi1,..,iN c(x1
i1 , ..., X N

iN )

∑
i1,..,ik−1,ik+1,..,iN

pi1,..,iN = αk
ik , for ik ∈ Ik and k = 1, ..., N,

− δk
i1,..,ik ,j ≤

∑
ik+1,..,iN

pi1,..,iN (xk+1
ik+1

− xk
ik ) ≤ δk

i1,..,ik ,j , for ik ∈ Ik , j ∈ J and k = 1, .., N,

∑
i1,..,ik ,j

δk
i1,..,ik ,j ≤ ϵn, for k = 1, ..., N − 1.

where we recall xk
ik = (xk

ik ,1, .., xk
ik ,d ). □
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Convergence of the finitely supported marginals

The following theorem gives the convergence rate for N = 2 and d = 1.

Theorem

Let N = 2 and d = 1, or equivalently, µ = (µ, ν) and c : R2 → R. In addition to
the conditions of Theorem 1, we assume that sup(x ,y)∈R2 |∂2

yy c(x , y)| < ∞ and ν
has a finite second moment. Then there exists C > 0 such that

|Pϵn (µn, νn) − P(µ, ν)| ≤ C inf
R≥0

λn(R), for all n ≥ 1,

where λn : (0, ∞) → R is given by

λn(R) := (R + 1)ϵn +
∫

(−∞,−R)∪(R,∞)
(|y | − R)2ν(dy).

In particular, the convergence rate is proportional to ϵn if supp(ν) is bounded.
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Case for finitely many option prices

Remark
In general, the distributions µ1, .., µN will not be fully specified by the market when
d ≥ 2. For k = 1, .., N, let Sk := (S(1)

k , ...S(d)
k ), where S(i)

k stands for the price of
the i th stock at time k. Then, in practice, only prices of call options (S(i)

k − K )+,
or put options (K − S(i)

k )+, for a finite set of strikes K are actively traded in the
market. Even assuming call options are quotes for all possible strikes K only yields
the distributions µk,i of S i

k . Therefore, this leads to a modified optimization
problem. Denote µ⃗k := (µk,1, ..., µk,d ) and µ⃗ := (µ⃗k)1≤k≤N , and let Mϵ(µ⃗) be
the set of ϵ- approximating martingale measures P satisfying P(S i

k)−1 = µk,i , for
k = 1, .., N and i = 1, ..., d . Then, we define the optimization problem by

Pϵ(µ⃗) := sup
P∈Mϵ(µ⃗)

EP[c(S1, .., SN)]. (10)

The problem (10), with ϵ = 0, was first introduced in Lim (2024) and was called
multi-martingale optimal transport.
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