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Random String

u(t, x) ∈ Rd , x ∈ [0, J], t ∈ [0,T ], with periodic boundary conditions

∂tu(t, x) = ∂2
xu(t, x) + Ẇ(t, x),

u(0, x) = u0(x)

Ẇ is a vector of independent white noises: Distribution valued centred
Gaussian process

E
(
Ẇ (h)Ẇ (g)

)
=

∫
h(t, x)g(t, x) dt dx

Heat kernel G : [0,T ]× [0, J] → R

∂tG(t, x) =
1

2
∂2
xG(t, x), G(0, x) = δ(x).

Random string solves

u(t, x) = Gt ∗ u0(x) +N(0, t; x),

where Gt ∗ u0(x) is the determinstic term and the noise term

N(0, t; x) =

∫ t

0

∫ J

0

Gt−s(x , y)W(ds, dy).
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Obstacles

η: Poisson point process on Rd with intensity ν. (independent of string)
Closed balls of radius a around each point.

Survival: No part of the string hits any obstacle up to time T
Question: What is the probability of survival of the string?
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Point process η =
∑

i≥1 δξi

H : Rd → [0,∞] is a compactly supported measurable function

V(z,η) =
∑
i≥1

H(z− ξi ),

Hard obstacles: H = ∞ · 1B(0,a)

Soft obstacles: H does not take the value ∞
Averaged Partition function

ST = E
[
exp

(
−
∫ T

0

∫ J

0

V (u(s, x),η) dxds

)]
(averaging over Ẇ and η)

For hard obstacles, ST is the probability of survival up to time T

Averaged Path Measure

QT (dω) =
Eη

[
exp

(
−
∫ t

0

∫ J

0
V
(
u(s, x),η

)
dsdx

)]
PẆ(dω)

ST
.

(measure on path space of the string after averaging over η)
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Brownian Motion among Poissonian obstacles

The analogous partition function ST = E
[
exp

(
−
∫ T

0
V (Bs ,η) ds

)]
ST = Evη(t, 0), where

∂tvη(t, x) = ∆vη(t, x)− V(x ,η)vη(t, x)

vη(t, 0) = 1

vη(t, 0) is in fact the quenched partition function.

For hard obstacles, a Poissonian calculation shows

ST = E exp(−ν|χT (a)|),

where χT (a) = ∪0≤t≤TB(Bt , a) is the Weiner sausage

For hard and soft obstacles

ST = exp
(
−CT

d
d+2 (1 + o(1))

)
as T → ∞

Under the averaged measure the paths have fluctuations of order T
1

d+2

A random string among Poissonian obstacles



Theorem (Hard obstacles)

Let d ≥ 2, J ≥ 1 and H = ∞ · 1B(0,a). There are constants C0,C1, · · · ,C4

independent of T , J such that for T ≥ C0J
2+ d

2

C1 exp

(
−C2

(
T

J

) d
d+2

)
≤ ST ≤ C3 exp

(
− C4

1 + | log J|

(
T

J2

) d
d+2

)
.

Theorem (Soft obstacles)

Let d ≥ 2, J ≥ 1 and H(x) ≥ C · 1B(0,a). Fix β > 0. There are constants

C0,C1, · · · ,C4 independent of T , J such that for T ≥ C0J
2+ d

2

C1 exp

(
−C2

(
T

J

) d
d+2

)
≤ ST ≤ C3 exp

(
− C4

J3+β (1 + | log J|)

(
T

J2

) d
d+2

)
.
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The exponent of T is the same as in the case of Brownian Motion

For hard obstacles
ST = E exp

(
−ν
∣∣∣ΓJ

T (a)
∣∣∣) ,

where ΓJ
T (a) = ∪0≤s≤T

0≤x≤J
B(u(s, x), a)

Computing an upper bound for ST amounts to computing lower bounds
for |ΓJ

T (a)|.
The upper bound actually holds for all T > 0 while the lower bound needs

T ≥ C0J
2+ d

2 .

The constants are independent of T , J but depend on ν, a, C, β.
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Broader context

In many statistical mechanics models one has a set of configurations
ω ∈ Ω that the physical system can take. Assume |Ω| < ∞.

Hamiltonian H : Ω → R, H(ω) is the energy of the configuration ω

µ = (µ(ω))ω∈Ω probability distribution on Ω

Minimizing entropy
∑

ω µ(ω) log µ(ω) subject to average energy∑
ω µ(ω)H(ω) = U (fixed), we obtain

µβ(ω) =
e−βH(ω)∑
ω e−βH(ω)

, (Gibbs distribution)

where β = β(ω) is the inverse temperature, uniquely determined by∑
ω µ(ω)H(ω) = U.

The partition function Z(β) =
∑

ω e−βH(ω) contains a lot of information
about the model.

Many famous discrete models: Ising Model, Directed Polymers in Random
Environment, Hard Core Lattice Gas, Potts Models

In our model the energy function is given by
∫ T

0

∫ J

0
V(u(s, x),η)dxds.
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(Assume from now on J = 1)

Xt =

∫ 1

0

u(t, x) dx , (Center of Mass) , Rt = sup
x∈[0,1]

|u(t, x)− Xt | , (Radius).
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Lemma

(i) Xt is a Brownian motion. (ii) Xt and Rt are independent.

u(t, x) = Gt ∗ u0(x) +

∫ t

0

∫ 1

0

Gt−s(x , y)W(ds, dy)

Xt =

∫ 1

0

u0(x)dx +

∫ t

0

W(dyds)

u(t, x)−Xt =

∫ 1

0

[G(t, x − y)− 1] u0(y)dy+

∫
[0,t]×[0,1]

[G(t − s, x − y)− 1]W(dsdy)

Cov(Xt , u(t, x)− Xt) =

∫ t

0

∫ 1

0

[G(t − s, x − y)− 1] dyds = 0.
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Lower bound

Consider the event A that there is a large obstacle-free ball of radius α+ a
around the origin, and the string lies within this ball up to time T .

P

 sup
s≤T

x∈[0,1]

|u(s, x)| ≤ α

2

 ≥ P
(
sup
s≤T

|Rs | ≤
α

4

)
P
(
sup
s≤T

|Xs | ≤
α

4

)

≥ exp

(
−C

T

α2

)
(For large T the fluctuations of R are small compared to that of X)

P ( no obstacles in ball of radius α+ a around 0) = exp
(
−Cν(α+ a)d

)
.

ST ≥ P(A) ≥ exp
(
−C T

α2

)
· exp

(
−Cν(α+ a)d

)
, optimize, α ≈ T

1
d+2 .
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Upper bound
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Upper bound

With high probability there are at least T
d

d+2 many time points
τ1 < τ2 < · · · ≤ T separated by at least L (large) such that the balls of
radius Λ around Xτi are disjoint.

For large t

u(t, x) =

∫ 1

0

Gt(x , y)u0(y)dy +N(0, t; x)

≈
∫ 1

0

u0(y)dy +N(0, t; x)

= X0 +N(0, t; x)

On the other hand

Xt = X0 +

∫ 1

0

N(0, t; y)dy
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Upper bound

For f : [0, 1] → Rd

R(f) := sup
x,y∈[0,1]

|f(x)− f(y)|, S (f) :=
⋃

x∈[0,1]

B(f(x), a)

For large t

P
(
R (N(0, t; ·)) ≤ Λ

2
, |S (N(0, t; ·))| ≥ ad−

3
2

)
≥ 1

2

It is enough to show above for the spatial process

N(0, t; ·)−N(0, t; 0)
d
= N(−t, 0; ·)−N(−t, 0; 0)

≈ N(−∞, 0; ·)−N(−∞, 0; 0)

Therefore for large t, with probability at least 1
2

|u(t, x)− Xt | ≤ Λ, and |S (u(t, ·))| ≥ ad−
3
2 . (*)
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Upper bound

We count the number of times τi at which (*) holds.

If the events were i.i.d. then standard large deviation theory will guarantee

that with high prob. a positive fraction of the T
d

d+2 balls around Xτi

would contain spatial sausages of volume ad−
3
2 around them, all of which

are disjoint.

However these are NOT independent.

u(t, ·) = Gt−s ∗ u(s, ·) +N(s, t, ·)

If t − s large the first term becomes approximately constant. (see next
slide)

Recall that the τi are spaced L (large) apart. With high probability one

can get a subsequence τik (of O(T
d

d+2 ) many τi ’s) such that

u
(
τik+1 , ·

)
= Gτik+1

−τik
∗ u (τik , ·) +N

(
τik , τik+1 ; ·

)
≈

∫ 1

0

u (τik , y) dy +N
(
τik , τik+1 ; ·

)
R
(
N
(
τik , τik+1 ; ·

))
and S

(
N
(
τik , τik+1 ; ·

))
are independent of the past
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Lemma

For f : [0, 1] → Rd

R(Gt ∗ f) ≤ 4de−4π2tR(f).

Proof.

We consider one component f of f. Let f (x) =
∑

k ake
i2πkx .

sup
x,y

|(Gt ∗ f )(x)− (Gt ∗ f )(y)| = sup
x,y

∣∣∣∣∣∣
∑
k ̸=0

e−4π2k2tak
[
e i2πkx − e i2πky

]∣∣∣∣∣∣
≤ 4e−4π2t

∑
k ̸=0

a2k

1/2

Since
∫ 1

0
f (x)dx is the zeroth Fourier coefficient of f we have∑
k ̸=0

a2k

1/2

=

∥∥∥∥f −
∫ 1

0

f (x)dx

∥∥∥∥
2

≤
∥∥∥∥f − ∫ 1

0

f(x)dx

∥∥∥∥
2

≤ R(f)

A random string among Poissonian obstacles



THANK YOU
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