Ergodicity properties of affine term structure models.

Chiraz Trabelsi

University of Mayotte and IMAG Montpellier

based on joint papers with P. Jin , V. Mandrekar and B. Rüdiger International Conference on Stochastic Calculs and Applications to Finance June 5, 2024

$$dX_t = a(\theta - X_t)dt + \sigma\sqrt{X_t}dW_t + dJ_t, \quad X_0 = x \ge 0,$$

where $a, \sigma > 0$, $\theta \ge 0$,

- Exponential ergodicity results for JCIR processes
- Exp. ergodicity results and Harris recurrence as well as density of BAJD
- Harris recurrence and calibration results for CIR process based on joint papers with P. Jin , V. Mandrekar and B. Rüdiger

Using Ergodicity for calibration

Idea: Let π be the invariant measure of an ergodic process X_s .

$$rac{1}{t}\int_0^t f(X_s)ds
ightarrow \int f(x)\pi(dx)$$
; time average $ightarrow$ average w.r.t. π

Remark:

- the process depends on some constant a,θ,σ, as well as the invariant measure.
- Relation between process and invariant measure is known by stochastic analysis.
- Time avarage can be observed by historical data
- The constants can be found by time average, hence for the invariant measure and hence for the process

- Affine processes and properties
- CIR process and strong ergodic properties
- Application for calibration of the parameter of the CIR process
- A particular JCIR: the BAJD. Strong ergodic properties
- Exponential ergodicity of JCIR

・ 同 ト ・ 三 ト ・ 三 ト

Consider

$$dX_t = a(\theta - X_t)dt + \sigma\sqrt{X_t}dW_t + dJ_t, \quad X_0 = x \ge 0,$$

where $a, \sigma > 0, \theta \ge 0$, W_t is a 1-dimensional Brownian motion and J_t is a stoch. independent pure-jump Lévy process with its Lévy measure ν concentrating on $(0, \infty)$ and satisfying

$$\int_{(0,\infty)} (\xi \wedge 1) \nu(d\xi) < \infty.$$

Existence and uniqueness of strong solution follows from results of Fu and Li (2010)

Def. (see e.g. [Duffie, Filipovic, Schachermeyer 2003],..) An affine process with values in \mathbb{R}_+ is a time homogeneous Markov Process $(X_t)_{t\geq 0}$ which characteristic function of X_t (given $X_0 = x$) are exponentially affine, i.e there exist $\phi : \mathbb{R}_+ \times i\mathbb{R} \to \mathbb{C}$, $\psi : \mathbb{R}_+ \times i\mathbb{R} \to \mathbb{C}$, s.th.

$$E_{x}[e^{uX_{t}}]=e^{\phi(t,u)+x\psi(t,u)},$$

Theorem [Duffie, Filipovic, Schachermeyer An. Appl. Prob 2003, or Keller -Ressel, Schachermeyer, Teichmann PTRF 2011] An affine process is a Feller process (in particular $P_t C_0(\mathbb{R}) \subset C_0(\mathbb{R})$).

Theorem: $\phi(t, u)$ and $\psi(t, u)$ satisfy the "semi-flow property":

$$\phi(t+s,u) = \phi(s,u) + \phi(t,\psi(s,u)), \quad \psi(t+s,u) = \psi(t,\psi(s,u))$$

, **Proof:** Let $f_u(x) := e^{ux}$

$$P_t f_u(x) = E_x [e^{uX_t}] = e^{\phi(t,u) + x\psi(t,u)} = e^{\phi(t,u)} f_{\psi(t,u)}(x),$$

$$P_{t+s} f_u(x) = P_t P_s f_u(x) = e^{\phi(s,u)} P_t f_{\psi(s,u)}(x) = e^{\phi(s,u) + \phi(t,\psi(s,u))} f_{\psi(t,\psi(s,u))}$$

$$P_{t+s} f_u(x) = e^{\phi(t+s,u)} f_{\psi(t+s,u)}(x)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

Def. An affine process is called regular, if the derivatives

$$F(u) := rac{\partial \phi}{\partial t}(t,u)|_{t=0+}$$
 $R(u) := rac{\partial \psi}{\partial t}(t,u)|_{t=0+}$

exist and are continuous at u = 0.

Corollary: If $(X_t)_{t\geq 0}$ is a regular affine process then "Riccati equations" hold:

$$\begin{cases} \partial_t \phi(t, u) = F(\psi(t, u)), & \phi(0, u) = 0, \\ \partial_t \psi(t, u) = R(\psi(t, u)), & \psi(0, u) = u, \end{cases}$$

Proof: Use the semiflow property.

Cox-Ingersoll-Ross model (or CIR model)

- 1985, by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross
- A model to describe the evolution of interest rates
- The CIR process X_t is given as the unique strong solution of the following stochastic differential equation

$$dX_t = (a\theta - aX_t)dt + \sigma\sqrt{|X_t|}dW_t, \quad X_0 = x \ge 0,$$

where $a, \theta, \sigma > 0$ are constants and W_t is a 1-dimensional Brownian motion defined on some filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ with \mathcal{F}_t satisfying the usual conditions.

Cox-Ingersoll-Ross model (or CIR model)

- The CIR model has a density
- when the rate X_t gets close to zero, the diffusion coefficient $\sigma \sqrt{|X_t|}$ also becomes close to zero.
- The singularity of the diffusion coefficient at the origin implies that an initially nonnegative interest rate can never subsequently become negative. X_t ≥ 0 if X₀ ≥ 0.
- Due to the result of Yamada-Watanabe (1989), the above SDE has a unique strong solution.
- The drift $(a\theta aX_t)$ ensures mean reversion of the interest rate towards the long-term value θ .

• As well known, the CIR process is an affine process in \mathbb{R}_+ , i.e.

$$E[exp(uX_t)] = exp(\phi(t, u)) + x\psi(t, u))$$

$$\forall (t, u) \in \mathbb{R}_+ \times \{ u \in \mathbb{C} : Re(u) < 0 \}$$

where the functions $\phi(t, u)$ and $\psi(t, u)$ solve the Riccati equations

$$\begin{cases} \partial_t \phi(t, u) = F(\psi(t, u)), & \phi(0, u) = 0, \\ \partial_t \psi(t, u) = R(\psi(t, u)), & \psi(0, u) = u, \end{cases}$$
(1)

with F and R satisfies

$$F(u) = a\theta u$$
(2)
$$R(u) = \frac{\sigma^2 u^2}{2} - au.$$
(3)

Solving the generalized Riccati equations, we get

$$\phi(t, u) = -\frac{2a\theta}{\sigma^2} \log\left(1 - \frac{\sigma^2}{2a}u(1 - e^{-at})\right)$$
$$\psi(t, u) = \frac{ue^{-at}}{1 - \frac{\sigma^2}{2a}u(1 - e^{-at})}$$

Thus

$$\begin{aligned} E[\exp(uX_t)] &= \int_{\mathbb{R}_+} p(t,x,y) e^{uy} \, dy = \exp(\phi(t,u) + x\psi(t,u)) \\ & \left(1 - \frac{\sigma^2}{2a}u(1 - e^{-at})\right)^{-\frac{2a\theta}{\sigma^2}} \cdot \exp\left(\frac{xue^{-at}}{1 - \frac{\sigma^2}{2a}u(1 - e^{-at})}\right). \end{aligned}$$

イロト イヨト イヨト イヨト

臣

Duffie et al. constructed the CIR process as a Markov process on the canonical path space. We denote :

 $\hat{\Omega}$: the canonical path space, namely $\hat{\Omega} = C([0,\infty); \mathbb{R}_+)$ \hat{X}_t : the canonical process on $\hat{\Omega}$. $(\hat{\mathcal{F}}_t)_{t>0}$: the filtration generated by \hat{X}_t , namely

 $\hat{\mathcal{F}}_t := \sigma(\hat{X}_s, 0 \le s \le t)$ and $\hat{\mathcal{F}} := \sigma(\hat{X}_s, s \ge 0)$. The map

$$X:(\Omega,\mathcal{F})
ightarrow(\hat{\Omega},\hat{\mathcal{F}})$$

induces a measure \hat{P}_x on $(\hat{\Omega}, \hat{\mathcal{F}})$, which is the law of the CIR process starting from x on the canonical path space.

 \Rightarrow The Markov process $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P}_x, x \in \mathbb{R}_+)$ is a Feller process.

向下 イヨト イヨト

Lemma

CIR process is a "regular Feller process" on \mathbb{R}_+ .

Definition: Consider a one -dim Feller process X with distributions P_x . The process is said to be a "regular Feller process" if there exists a locally finite measure ρ and a continuous function $(t, x, y) \mapsto p_t(x, y) > 0$ such that

$$P_x\{X_t\in B\}=\int_B p_t(x,y)
ho(dy),\quad x\in\mathbb{R},\ B\in\mathbb{R}_+,\ t>0.$$

Idea of Proof

- The supporting measure for the CIR process can not be the Lebesgue measure.
- The behavior of the transition density at y = 0 violates the regularity conditions because if $\frac{2a\theta}{\sigma^2} < 1$, $p(t, x, 0) := \lim_{y \to 0} p(t, x, y) = \infty$ and if $\frac{2a\theta}{\sigma^2} > 1$, then $p(t, x, 0) := \lim_{y \to 0} p(t, x, y) = 0$
- To overcome this difficulty, we define a new measure ρ on $(\mathbb{R}_+,\mathcal{B}(\mathbb{R}_+))$ as

$$\rho(dx):=h(x)dx,$$

where

$$h(x) = \begin{cases} x^{\frac{2a\theta}{\sigma^2}-1}, & 0 \le x \le 1, \\ 1, & x > 1. \end{cases}$$

マロト イヨト イヨト ニヨ

Definition

A continuous-time Markov process (X_t) with state space (S, S) is said to be Harris recurrent if for some σ -finite measure ρ

$$P_x\Big(\int_0^\infty \mathbf{1}_{\{X_s\in A\}}ds=\infty\Big)=1,$$

for any $x \in S$ and $A \in S$ with $\rho(A) > 0$.

Definition

A Markov process (X_t) is said to be uniformly transient if

$$\sup_{x} E_{x} \Big[\int_{0}^{\infty} \mathbf{1}_{\mathcal{K}}(X_{t}) dt \Big] < \infty$$

for every compact $K \subset S$.

Theorem (Kallenberg book Th. 20.17)

A regular Feller Process is either Harris Recurrent or Uniformly transient

Theorem (Jin, Mandrekar, Rüdiger , T.)

The CIR process $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P}_x, x \in \mathbb{R}_+)$ is Harris recurrent.

Sketch of the proof

Lemma

The CIR process $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P}_x, x \in \mathbb{R}_+)$ is not uniformly transient.

< ロ > < 同 > < 回 > < 回 >

- Harris recurrence + regular Feller property guarantees the existence of a unique (up to multiplication by a constant) invariant measure for the Markov process.
- If this invariant measure is finite, then the process is called positive Harris recurrent.
- The CIR process has a finite invariant measure μ. It was shown in the original paper by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross (1985) that μ is a Gamma distribution :

$$\mu(dy) := \frac{\omega^{\nu}}{\Gamma(\nu)} y^{\nu-1} e^{-\omega y} dy, \quad y \ge 0,$$

where $\omega \equiv \frac{2a}{\sigma^2}$ and $\nu \equiv \frac{2a\theta}{\sigma^2}$. \Rightarrow The CIR process is positive Harris recurrent.

(1) マント (1) マント

Corollary Let $X = (X_t)_{t \ge 0}$ be the CIR process. Then for any $f \in \mathcal{B}_b(\mathbb{R}_+)$ we have

$$rac{1}{t}\int_0^t f(X_s)ds \ o \ \int_{\mathbb{R}_+} f(x)\pi(dx) \quad a.s.$$

as $t \to \infty,$ where π is the unique invariant probability measure of the CIR.

Proof.

The above convergence follows from Harris recurrence and [Theorem 20.21 book of Kallenberg].

(4月) トイヨト イヨト

Definition:

- The tail σ -field on $\hat{\Omega}$ is defined as $\hat{\mathcal{T}} := \cap_{t \ge 0} \sigma\{\hat{X}_s : s \ge t\}.$
- A σ -field $\mathcal{G} \subset \hat{\mathcal{F}}$ on $\hat{\Omega}$ is said to be \hat{P}_{μ} -trivial if $\hat{P}_{\mu}(A) = 0$ or $\hat{P}_{\mu}(A) = 1$ for every $A \in \mathcal{G}$, where

$$\hat{P}_{\mu}(\cdot) := \int_{\mathbb{R}_+} \hat{P}_x(\cdot) \mu(dx)$$

From the Harris recurrence of the CIR process we reproduce the following well-known fact.

Corollary

The CIR process $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P}_x, x \in \mathbb{R}_+)$ is strongly ergodic, meaning that the tail σ -field $\hat{\mathcal{T}}$ of the CIR process is \hat{P}_{μ} -trivial for every μ .

Theorem (Jin, Mandrekar, Rüdiger , T.)

Suppose that $g : \mathbb{R}_+ \to \mathbb{R}$ is continuous and $f : \mathbb{R} \to \mathbb{R}_+$ is measurable. Then for any $x \in \mathbb{R}_+$ we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{j=0}^{N-1}f\Big(\int_{j}^{j+1}g(\hat{X}_{s})(\hat{\omega})ds\Big)=\hat{E}_{\mu}\bigg[f\Big(\int_{0}^{1}g(\hat{X}_{s})(\hat{\omega})ds\Big)\bigg]$$

for \hat{P}_x -almost all $\hat{\omega} \in \hat{\Omega}$, where μ is the unique invariant probability measure for the CIR process.

The Proof uses positive Harris recurrence and other results like Birkhoff's Theorem in Kallenberg's book.

伺下 イヨト イヨー

Introduction to some Application of the insurance company DeBeKa

Calibration of a model describing the credit migration model of Hurd and Kuznetsov. Consider the finite state space $\{1, 2, \dots, 8\}$, which can be identified with Moody's rating classes via the mapping:

$$\{1,2,\cdots,8\} \leftrightarrow \{\mathsf{AAA},\,\mathsf{AA},\,\mathsf{A},\cdots,\mathsf{default}\}.$$

The credit migration matrix $P(s, t), 0 \le s \le t$, is a stochastic 8×8 matrix and describes all possible transition probabilities between rating classes from time s to time t, namely

$$P(s,t) = \left(p_{ij}(s,t)\right)_{1 \le i,j \le 8}$$

where $p_{ij}(s, t)$ represents the transition probability from state *i* to state *j* from time *s* to time *t*.

イロト イヨト イヨト イヨト

If we choose the functions of the previous Theorem in the following forms:

$$f(x)=e^{-x}$$
 and $g(x)=\hat{D}_{ii}x,\ 1\leq i\leq 8,$

where \hat{D}_{ii} represent the eigenvalues of the generator matrix \hat{P} in the credit migration model considered by Debeka.

We get the convergence results developed by B. Koehler and V. Krafft (2011), not only in L^2 but holds also in L^p for any $p \ge 1$.

- 同 ト - ヨ ト - ヨ ト

Particular case of above JCIR: The Basic affine jump diffusion process (BAJD)

A particular JCIR is given by the BAJD -process, introduced by Duffie and Garleanu (2001) and analyzed also by Filipov (2001) and Keller -Ressel and Steiner (2008).

$$dX_t = a(\theta - X_t)dt + \sigma\sqrt{X_t}dW_t + dJ_t, \quad X_0 = x \ge 0, \quad (4)$$

where a, θ, σ are positive constants, W_t is a 1-dimensional Brownian motion and J_t is a pure-jump Lévy process with the Lévy measure

$$u(dy) = egin{cases} cde^{-dy}dy, & y \geq 0, \ 0, & y < 0, \end{cases}$$

for some constants $c \in \mathbb{R}_+$ and d > 0. The jump size and inter-arrival times are exponentially distributed with parameter d and c.

A (1) × A (2) × A (2) ×

$$E_{x}\left[e^{uX_{t}}\right] = \exp\left(\phi(t, u) + x\psi(t, u)\right), \quad u \in \mathcal{U} := \{u \in \mathbb{C} : \Re u \leq 0\},$$

where the functions $\phi(t, u)$ and $\psi(t, u)$ solve

$$\begin{cases} \partial_t \phi(t, u) = F(\psi(t, u)), & \phi(0, u) = 0, \\ \partial_t \psi(t, u) = R(\psi(t, u)), & \psi(0, u) = u, \end{cases}$$

$$egin{array}{ll} F(u)&=a heta u+rac{cu}{d-u}, & u\in\mathbb{C}\setminus\{d\},\ R(u)&=rac{\sigma^2 u^2}{2}-au, & u\in\mathbb{C}. \end{array}$$

イロン 不同 とくほど 不同 とう

Э

By solving the system one can get $\phi(t, u)$, $\psi(t, u)$ and finally that the characteristic function of BAJD process X_t is

$$E_{x}[e^{uX_{t}}] =$$

$$\begin{cases} \left(1 - \frac{\sigma^{2}}{2a}u(1 - e^{-at})\right)^{-\frac{2a\theta}{\sigma^{2}}} \cdot \left(\frac{d - \frac{\sigma^{2}du}{2a} + \left(\frac{\sigma^{2}d}{2a} - 1\right)ue^{-at}}{d - u}\right)^{\frac{c}{a - \frac{\sigma^{2}du}{2}}} \\ \cdot \exp\left(\frac{xue^{-at}}{1 - \frac{\sigma^{2}}{2a}u(1 - e^{-at})}\right), & \text{if } d \neq d_{0}, \\ \left(1 - \frac{\sigma^{2}}{2a}u(1 - e^{-at})\right)^{-\frac{2a\theta}{\sigma^{2}}} \exp\left(\frac{cu(1 - e^{-at})}{a(d - u)}\right) \exp\left(\frac{xue^{-at}}{1 - \frac{\sigma^{2}}{2a}u(1 - e^{-at})}\right), \text{if } d = d_{0}\end{cases}$$

where $d_0 = \frac{2a}{\sigma^2}$. Remember: if f(t, x, y) is the density of CIR -process, then

$$\int_{\mathbb{R}_+} f(t,x,y)e^{uy}dy = \left(1 - \frac{\sigma^2}{2a}u(1 - e^{-at})\right)^{-\frac{2a\theta}{\sigma^2}} \cdot \exp\left(\frac{xue^{-at}}{1 - \frac{\sigma^2}{2a}u(1 - e^{-at})}\right)$$

向下 イヨト イヨト

We find an explicit formula for the density p(t, x, y) of the BAJD -process, which in particular has the following form: in all cases we get

$$p(t, x, y) = L(t)f(t, x, y) + \int_0^y f(t, x, y - z)h(t, z)dz, \qquad (5)$$

where L(t) is continuous in t > 0, 0 < L(t) < 1 and h(t, z) is non-negative, continuous in $(t, z) \in (0, \infty) \times [0, \infty)$ and $\int_R h(t, z) dz = 1 - L(t)$. Moreover we prove **Theorem** [Jin, Rüdiger, T.]

Theorem

The BAJD- process $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P}_x, x \in \mathbb{R}_+)$ is positive Harris recurrent.

イロト イポト イヨト イヨト

Jump Diffusion CIR model (JCIR)

$$dX_t = a(\theta - X_t)dt + \sigma\sqrt{X_t}dW_t + dJ_t, \quad X_0 = x \ge 0,$$

where $a, \sigma > 0, \theta \ge 0$, W_t is a 1-dimensional Brownian motion and J_t is a stoch. independent pure-jump Lévy process with its Lévy measure ν concentrating on $(0, \infty)$ and satisfying $\int_{(0,\infty)} (\xi \wedge 1) \nu(d\xi) < \infty$.

$$\begin{cases} \partial_t \phi(t, u) = F(\psi(t, u)), & \phi(0, u) = 0, \\ \partial_t \psi(t, u) = R(\psi(t, u)), & \psi(0, u) = u, \end{cases}$$

and

$$F(u) = a\theta u + \int_{(0,\infty)} (e^{u\xi} - 1)\nu(d\xi),$$
$$R(u) = \frac{\sigma^2 u^2}{2} - au.$$

By solving the ODEs one can get

$$\phi(t,u) = -\frac{2a\theta}{\sigma^2} \log\left(1 - \frac{\sigma^2}{2a}u(1 - e^{-at})\right) + \int_0^t \int_{(0,\infty)} \left(e^{\xi\psi(s,u)} - 1\right)\nu(d\xi)d\xi$$

and

$$\psi(t,u) = \frac{ue^{-at}}{1 - \frac{\sigma^2}{2a}u(1 - e^{-at})}$$

イロト イヨト イヨト イヨト

э

Characteristic function of JCIR

$$dX_t = a(\theta - X_t)dt + \sigma\sqrt{X_t}dW_t + dJ_t, \quad X_0 = x \ge 0,$$

where $a, \sigma > 0, \ \theta \ge 0$

$$E_{x}[e^{uX_{t}}] = \left(1 - \frac{\sigma^{2}}{2a}u(1 - e^{-at})\right)^{-\frac{2a\theta}{\sigma^{2}}} \cdot \exp\left(\frac{xue^{-at}}{1 - \frac{\sigma^{2}}{2a}u(1 - e^{-at})}\right)$$
$$\cdot \exp\left(\int_{0}^{t}\int_{0}^{\infty}\left(e^{\xi\psi(s,u)} - 1\right)\nu(d\xi)ds\right).$$

Set

$$I := \left(1 - \frac{\sigma^2}{2a}u(1 - e^{-at})\right)^{-\frac{2a\theta}{\sigma^2}} \cdot \exp\left(\frac{xue^{-at}}{1 - \frac{\sigma^2}{2a}u(1 - e^{-at})}\right)$$
$$II := \exp\left(\int_0^t \int_0^\infty \left(e^{\xi\psi(s,u)} - 1\right)\nu(d\xi)ds\right).$$

イロン 不同 とくほど 不同 とう

Э

CIR

$$dY_t = a(\theta - Y_t)dt + \sigma\sqrt{Y_t}dW_t, \quad Y_0 = x \ge 0$$

$$E_{x}[e^{uY_{t}}] = \left(1 - \frac{\sigma^{2}}{2a}u(1 - e^{-at})\right)^{-\frac{2a\theta}{\sigma^{2}}} \cdot \exp\left(\frac{xue^{-at}}{1 - \frac{\sigma^{2}}{2a}u(1 - e^{-at})}\right)$$
$$= I$$

• Y_t has a density function f(t, x, y)

イロト イヨト イヨト イヨト

臣

JCIR (θ =0 and x = 0):

$$dZ_t = -aZ_t dt + \sigma \sqrt{Z_t} dW_t + dJ_t, \quad Z_0 = 0 \ge 0$$

$$E_{x}[e^{uZ_{t}}] = \exp\left(\int_{0}^{t}\int_{(0,\infty)}\left(e^{\xi\psi(s,u)}-1\right)\nu(d\xi)ds\right) = II$$

where

$$\psi(t,u) = \frac{ue^{-at}}{1 - \frac{\sigma^2}{2a}u(1 - e^{-at})}$$

• II resembles the characteristic function of a compound Poisson distribution

イロト イヨト イヨト イヨト 三日

Remember that

$$II = E_x[e^{uZ_t}] = \exp\left(\int_0^t \int_{(0,\infty)} \left(e^{\xi\psi(s,u)} - 1\right)\nu(d\xi)ds\right)$$

where

$$\psi(t,u) = \frac{ue^{-at}}{1 - \frac{\sigma^2}{2a}u(1 - e^{-at})}$$

Theorem 1

Suppose that $\int_{(0,1)} \xi \ln(\frac{1}{\xi})\nu(d\xi) < \infty$. Then II is the characteristic function of a compound Poisson distribution. In particular, $\mathbb{P}_x(Z_t = 0) > 0$.

(日本) (日本) (日本)

3

Theorem 2 (Lower bound for the transition density of JCIR)

Suppose that $\int_{(0,1)} \xi \ln(rac{1}{\xi})
u(d\xi) < \infty$. Then for all $A \in \mathcal{B}(\mathbb{R}_+)$,

$$\mathbb{P}(X_t \in A) \geq C(t) \int_A f(t, x, y) dy,$$

where C(t) > 0 and f(t, x, y) is the transition density of the CIR process without jumps.

Corollary: if $\int_{(0,1)} \xi \ln(\frac{1}{\xi}) \nu(d\xi) < \infty$, then the JCIR process X_t is irreducible

(日本) (日本) (日本)

Exponential ergodicity of JCIR

Suppose that

$$\int_{(1,\infty)} \xi \
u(d\xi) < \infty \quad ext{and} \quad \int_{(0,1)} \xi \ln(rac{1}{\xi})
u(d\xi) < \infty.$$

Theorem

[M. Keller Ressel] JCIR has a unique invariant prob. measure π .

Theorem

The JCIR process X_t is exponential ergodic, namely there exist constants $0 < \beta < 1$ and $0 < B < \infty$ such that

$$\|P_t(x,\cdot)-\pi\|_{TV} \leq B(x+1)\beta^t, \quad t \geq 0, \quad x \in \mathbb{R}_+.$$

where $\|\cdot\|_{\mathcal{T}V}$ denotes the total-variation norm for signed measures on $R_+,$ namely

$$\|\mu\|_{TV} = \sup_{A \in \mathcal{B}(\mathbf{R}_+)} \{|\mu(A)|\}.$$

Proof: For any $\delta > 0$ we consider the δ -skeleton chain $Y_n^{\delta} := X_{n\delta}, \ n \in \mathbb{Z}_+$. Then $(Y_n^{\delta})_{n \in \mathbb{Z}_+}$ is a Markov chain with transition kernel $p(\delta, x, y)$ on the state space \mathbb{R}_+ with same invariant measure π .

- The CIR process Y_t is irreducible, aperiodic.
- It follows as Corollary that he JCIR process X_t is irreducible, aperiodic. (This is shown using Theorem 2)
- JCIR is a Feller Process
- There exists a Foster -Lyapunov function.

$$dX_t = a(\theta - X_t)dt + \sigma\sqrt{X_t}dW_t + dJ_t, \quad X_0 = x \ge 0,$$

Theorem 3 (Existence of a Lyapunov function for JCIR)

Suppose that $\int_{(1,\infty)} \xi \nu(d\xi) < \infty$. Then the function $V(x) = x, x \ge 0$ is a Lyapunov funciton for the JCIR process X_t , i.e. for all $t > 0, x \ge 0$,

$$E_{x}[V(X_{t})] \leq e^{-at}V(x) + M,$$

where $0 < M < \infty$ is a constant.

To prove strong ergodicity properties and analyse their speed of convergence (exp. ergodicity properties) we used

- affine properties of JCIR
- that JCIR can be obtained by convolution with CIR

Actually, I am trying to skip either one or the other property for some further interest rate model with jumps used by insurance companies.

(4月) トイヨト イヨト

[AK] Ben Alaya, M. and Kebaier, A.: Parameter Estimation for the Square-root Diffusions: Ergodic and Nonergodic Cases, *Preprint* (2011).

[CIR] Cox, J.C., Ingersoll, J.J.E., and Ross, S.A.: A theory of the term structure of interest rates, *Econometrica* **53** (1985), no. 2, 385–407.

[DFS] Duffie, D. and Filipović, D. and Schachermayer, W.: Affine processes and applications in finance, *Ann. Appl. Probab.* **13** (2003), no. 3, 984–1053.

[DF] Duffie, D., and Gârleanu, N. 2001. Risk and valuation of collateralized debt obligations. *Financial Analysts Journal* 57(1):41–59.

[F] Filipović, D. 2001. A general characterization of one factor affine term structure models. *Finance Stoch.* 5(3):389–412.
[FMS] Filipović, D., Mayerhofer, E., and Schneider, P. 2013. Density approximations for multivariate affine jump-diffusion processes. *J. Econometrics* 176(2):93–111.

[FL] Fu, Z.F., and Li, Z.H. 2010. Stochastic equations of non-negative processes with jumps. *Stochastic Process. Appl.* 120(3):306–330.

[GY] Göing-Jaeschke, A. and Yor, M.: A survey and some generalizations of Bessel processes, *Bernoulli* **9** (2003), no. 2, 313–349.

[G] Grigelionis, B. 2008. Thorin classes of Lévy processes and their transforms. *Lith. Math. J.* 48(3):294–315.

Harris, T.E.: The existence of stationary measures for certain Markov processes, in: *Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability* **II** (1956), 113–124, University of California Press, Berkeley and Los Angeles. [HK] T. R. Hurd and A. Kuznetsov: Affine Markov chain models of multifirm credit migration, *J. of credit risk* **3** (2007), 3–29. [IW] Ikeda, N. and Watanabe, S.: *Stochastic differential equations and diffusion processes*, North-Holland Publishing Co., Amsterdam, 1989.

[KA] Kallenberg, O. 2002. *Foundations of Modern Probability*, second ed., Probability and its Applications (New York), Springer-Verlag, New York.

Keller-Ressel, M. 2011. Moment explosions and long-term behavior of affine stochastic volatility models. *Math. Finance* 21(1):73–98.
[KM] Keller-Ressel, M., and Mijatović, A. 2012. On the limit distributions of continuous-state branching processes with immigration. *Stochastic Process. Appl.* 122(6):2329–2345.
[KSM] Keller-Ressel, M., Schachermayer, W., and Teichmann, J. 2011. Affine processes are regular. *Probab. Theory Related Fields* 151(3-4):591–611.

[KS] Keller-Ressel, M., and Steiner, T. 2008. Yield curve shapes and the asymptotic short rate distribution in affine one-factor models. *Finance Stoch.* 12(2):149–172.

[KST] Keller-Ressel, M., Schachermayer, W. and Teichmann, J.: Affine processes are regular, *Probab. Theory Related Fields* **151** (2011), 591–611.

[DeBeKa] Koehler, B. and Kafft,V.: Ein Kreditmodell basierend auf Migrationsmatrizen, *Preprint insurance company DeBeKa*, *Koblenz* (2011).

[MT] Meyn, S.P., and Tweedie, R.L. 1993. Stability of Markovian processes. II. Continuous-time processes and sampled chains. Adv. in Appl. Probab. 25(3):487–517.
[MT2] Meyn, S.P., and Tweedie, R.L. 1993. Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. in Appl. Probab. 25(3):518–548.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ