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Motivation

Integration of a (smooth) function is simply the ‘area under the curve’.

When function are ‘rough’ can we do the same? NO!!!
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Sequences of partitions

A sequence of partitions π of [0, T ] is a sequence (πn)n≥1:
πn = (0 = tn

0 < tn
1 < · · · < tn

N(πn) = T ).

Example: dyadic partition
πn = {0 <

1
2n

<
2
2n

< ... <
T2n

2n
}.

Example: Lebesgue partition: tn
0 = 0 and

tn
k+1(ω) = inf{t > tn

k , |ω(t) − ω(tn
k)| ≥ T2−n}.
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p-th variation for continuous functions

Proposition
x ∈ C0([0, T ],R) has finite p-th variation along π = (πn, n ≥ 1) if and only if

the
sequence of functions [x](p)

πn defined by

[x](p)
πn (t) =

∑
tn
j ∈πn

|x(tn
j+1 ∧ t) − x(tn

j ∧ t)|p

converges uniformly on [0, T ] to a continuous (increasing) function

[x](p)
π ∈ C0([0, T ],R).
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Quadratic variation for continuous functions

For the case of continuous function, there is an analogue definition of quadraticvariation in Rd.

Proposition (Cont (2012))
x ∈ C0([0, T ],Rd) has finite quadratic variation along π = (πn, n ≥ 1) if and only
if the sequence of functions [x]πn defined by

[x]πn(t) =
∑

tn
j ∈πn

(x(tn
j+1 ∧ t) − x(tn

j ∧ t))⊤(x(tn
j+1 ∧ t) − x(tn

j ∧ t))

converges uniformly on [0, T ] to a continuous (increasing) function
[x]π ∈ C0([0, T ], S+

d ).
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Motivation: Pathwise Itô formula

Theorem (Föllmer (1981))
Assume that ω ∈ D([0, T ],Rd) ∩ Qπ([0, T ],Rd) and f ∈ C2(Rd,R).

Then the
limit of Riemann sums:∫ t

0
∇f(ω(s))dπω := lim

n→∞

∑
tn
j ∈πn

∇f(ω(tn
j )).(ω(tn

j+1 ∧ t) − ω(tn
j ∧ t)),

exists and also one has:

f(ω(t)) = f(ω(0)) +
∫ t

0
∇f(ω(s))dπω + 1

2

∫ t

0
∇2f(ω(s))d[ω]π

+∑[0,t] f(ω(s)) − f(ω(s−)) − ∇f(ω(s))∆ω(s).
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Dependence on the partition sequence

Consider now two sequences of partitions π, τ and a continuous path
ω ∈ Qπ([0, T ],Rd) ∩ Qτ ([0, T ],Rd).

Since ∀f ∈ C2(Rd),

f(ω(t)) − f(ω(0)) =
∫ t

0
∇f(ω).dπω + 1

2

∫ t

0
< ∇2f(ω), d[ω]π >.

=
∫ t

0
∇f(ω).dτ ω + 1

2

∫ t

0
< ∇2f(ω), d[ω]τ > .

The pathwise integrals are equal if and only if [ω]π = [ω]τ .But the pathwise quadratic variation does depend on the sequence of partitions...
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Quadratic variation is path dependent

The following construction (Freedman 1983) shows that the notion of pathwisequadratic variation depends on the sequence of partitions:
Proposition (Freedman (1983))
Let ω ∈ C0([0, T ],Rd). There exists a sequence of partitions (πn) such that
[ω]π = 0.

• In fact Davis, Obłój and Siorpaes (2018) extend this construction to show thatgiven any increasing function A : [0, T ] → [0, ∞) one can construct asequence of partitions π = (πn) such that [ω]π(t) = A(t).
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Motivation for intrinsic quadratic variation

• On the other hand, we know for Brownian paths (Dudley 1973), for anysequence of partitions π = (πn)n≥1 with mesh o(1/ log n):
P
(∑

πn

|W (tn
i+1 ∧ t) − W (tn

i ∧ t)|2 n→∞→ t

)
= 1.

• So there must be a (big) class of functions for which one can obtain aninvariance property of quadratic variation with respect to a class of partitionsequences.
• Intuitively, such an invariance result should hold for functions that ‘locally
behave like Brownian motion’.

• We identify a set of paths and a class of partition sequences for which suchan invariance property holds.
(Joint work with Rama Cont)
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Balanced sequence of partitions

Let πn = infi=0,··· ,N(πn)−1 |tn
i+1 − tn

i | and |πn| = supi=0,··· ,N(πn)−1 |tn
i+1 − tn

i |.
Definition
We say a sequence of partitions π = (πn)n≥1 balanced if

∃c > 0, ∀n ≥ 1,
|πn|
πn

≤ c. (1)

Notation: B([0, T ]) the set of all balanced partition sequences of [0, T ].This condition means that the intervals in the partition πn are asymptoticallycomparable.
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Quadratic roughness along along partition sequneces

Definition (Quadratic roughness)

Let T = (Tn)n≥1 be the dyadic (Reference) partition of [0, T ] and
πn =

(
0 = sn

0 < sn
1 < · · · < sn

N(πn) = T
) be a balanced sequence of partitions of

[0, T ] with vanishing mesh |πn| → 0. We say that x ∈ C0([0, T ],Rd)∩
QT([0, T ],Rd) has the quadratic roughness property with coarsening index
0 < β < 1 along π on [0, T ] if there exists a subsequence or super-sequence
dn =

(
0 = tn

1 < tn
2 < · · · < tn

N(dn) = T
) of T with the following properties:

(i) |dn|β = O (|πn|), and
(ii) for all t ∈ [0, T ] :

N(πn)−1∑
j=1

∑
tn
i ̸=tn

i′ ∈(sn
j ,sn

j+1]

(
x(tn

i+1 ∧ t) − x(tn
i ∧ t)

)t (
x(tn

i′+1 ∧ t) − x(tn
i′ ∧ t)

)
n→∞−−−→ 0.

We denote by Rβ
π([0, T ],Rd) the set of paths satisfying this property.
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Intuition behind quadratic roughness

• In other words, the quadratic roughness property states that cross-productsof increments along the dyadic partition dn average to zero when groupedalong πn.
• Note that, since β < 1, the number of terms in the inner sum in (ii) grows toinfinity as n grows, so (ii) is the result of compensation across terms,reminiscent of the law of large numbers.
• This quadratic roughness plays a crucial role in the stability of quadraticvariation with respect to the partitions.
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Choice of reference partition

The dyadic partition may be replaced by any other balanced sequence ofpartitions σ with vanishing mesh |σn| → 0 satisfying
sup

n

|σn|
|σn+1|

< ∞

without changing any of the statements of the results.
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Quadratic roughness for Brownian paths

As expected, Brownian paths satisfy this roughness property:

Theorem (Quadratic roughness of Brownian paths)

Let W be a Wiener process on a probability space (Ω, F ,P), T > 0 and (πn)n≥1 a
balanced sequence of partitions of [0, T ] with

(log n)2|πn| n→∞→ 0. (2)
Then, for any 0 < β < 1, the sample paths of W almost-surely satisfy the
quadratic roughness property with coarsening index β:

∀β ∈ (0, 1), P
(

W ∈ Rβ
π([0, T ],R)

)
= 1.
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Necessicity of quadratic roughness

The quadratic roughness property is a necessary condition for the stability ofquadratic variation with respect to the choice of partition sequence.

Lemma (Cont & Das 2022)
Let x ∈ Cα([0, T ],Rd) ∩ QT([0, T ],Rd). Let π = (πn)n≥1 be a balanced partition
sequence of [0, T ] such that x ∈ Qπ([0, T ],Rd). Then:

(∀t ∈ [0, T ]), [x]π(t) = [x]T(t) ) ⇒ ∀β ∈ (0, 2α), x ∈ Rβ
π([0, T ],Rd).
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Uniqueness of pathwise QV for rough functions

Our main result is that quadratic roughness along such a sequence implies theuniqueness of pathwise quadratic variation:

Theorem (Uniqueness of quadratic variation (Cont & Das 2022))

Let π be a balanced sequence of partitions of [0, T ] and
x ∈ Cα([0, T ],Rd) ∩ Rβ

π([0, T ],Rd) for some 0 < β < 2α. Then

x ∈ Qπ([0, T ],Rd), and ∀t ∈ [0, T ], [x]π(t) = [x]T(t).
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Invariant definition of quadratic variation

Let T = (Tn)n≥1 be the dyadic sequence of partitions of [0, T ]. Define,
Q([0, T ],Rd) = C

1
2 −([0, T ],Rd) ∩ QT([0, T ],Rd). (3)

Lemma
The class Q([0, T ],Rd) is non-empty and contains all ‘typical’ Brownian paths.
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Quadratic variation map [Cont & Das 2022]

We have the following invariant quadratic variation map.
Theorem (Quadratic variation map)

There exists a unique map:

[ . ] : Q([0, T ],Rd) → C0([0, T ], S+
d )

x → [x]

such that: ∀π ∈ B([0, T ]), ∀β ∈ (0, 1),
∀x ∈ Rβ

π([0, T ],Rd) ∩ Q([0, T ],Rd), ∀t ∈ [0, T ], we get:

[x]π(t) = [x](t).

We call [x] the quadratic variation of x.
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Pathwise integration and pathwise Itô formula

Theorem (Invariance of the Föllmer integral (Cont & Das 2022))
There exists a unique map

I : C2(Rd) × Q([0, T ],Rd) → Q([0, T ],R)

(f, x) → I(f, x) =
∫ .

0
(∇f ◦ x).dx,

such that: ∀π ∈ B([0, T ]), ∀β ∈ (0, 1), ∀x ∈
Rβ

π([0, T ],Rd) ∩ Q([0, T ],Rd), ∀t ∈ [0, T ],

I(f, x)(t) =
∫ t

0
(∇f ◦ x).dπx = lim

n→∞

∑
πn

∇f(x(tn
i )).(x(tn

i+1 ∧ t) − x(tn
i ∧ t)).

We denote I(f, x) =
∫ .

0(∇f ◦ x)dx.
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Pathwise integration and Itô formula (cont.)

Theorem (Pathwise change of variable formula)
∀f ∈ C2(Rd), ∀π ∈ B([0, T ]), ∀β ∈ (0, 1), and, ∀x ∈ Rβ

π([0, T ],Rd) ∩
Q([0, T ],Rd), we have the following change of variable formula:

f(x(t)) − f(x(0)) =
∫ t

0
(∇f ◦ x).dx + 1

2

∫ t

0
< ∇2f(x), d[x] >
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So far...
1. Quadratic variation heavily depends on the choice of partition sequence.

2. Invariant notion of stochastic internal ⇐⇒ invariant quadratic variationacross partitions.3. Balanced partition π + quadratic roughness on path x =⇒ [x]π = [x]ref. part..4. Brownian motion satisfies this quadratic roughness property almost surely.5. In fact, for any deterministic partition sequence π = (πn) with
|πn| log n → 0, there exists Ωπ ⊂ Ω of full P-measure such that

∀ω ∈ Ωπ, [ω]π(t) = t.6. On the other hand, we know from Freedman’s result there exists for each
ω ∈ Ω a partition π = π(ω) such that [ω]π(ω)(t) = 0, and therefore

∩πΩπ = ∅.

So even for Brownian motion, quadratic roughness does not ensure an almost
sure invariance of quadratic variation across all deterministic partitions

(partitions purely on time variable).
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Some obvious questions!!

• Is there any notion of roughness which ensures almost sure invariance ofquadratic variation across a large (uncountable) class of partition sequence?

• Is this notion also ensures invariance of p-th variation? even for non-integer
p.

(Joint work with Rafał Łochowski, Toyomu Matsuda & Nicolas Perkowski)

22 p-th variation and roughness Purba Das Email: purba.das@kcl.ac.uk



Some obvious questions!!

• Is there any notion of roughness which ensures almost sure invariance ofquadratic variation across a large (uncountable) class of partition sequence?

• Is this notion also ensures invariance of p-th variation?

even for non-integer
p.

(Joint work with Rafał Łochowski, Toyomu Matsuda & Nicolas Perkowski)

22 p-th variation and roughness Purba Das Email: purba.das@kcl.ac.uk



Some obvious questions!!

• Is there any notion of roughness which ensures almost sure invariance ofquadratic variation across a large (uncountable) class of partition sequence?

• Is this notion also ensures invariance of p-th variation? even for non-integer
p.

(Joint work with Rafał Łochowski, Toyomu Matsuda & Nicolas Perkowski)

22 p-th variation and roughness Purba Das Email: purba.das@kcl.ac.uk



Some obvious questions!!

• Is there any notion of roughness which ensures almost sure invariance ofquadratic variation across a large (uncountable) class of partition sequence?

• Is this notion also ensures invariance of p-th variation? even for non-integer
p.

(Joint work with Rafał Łochowski, Toyomu Matsuda & Nicolas Perkowski)

22 p-th variation and roughness Purba Das Email: purba.das@kcl.ac.uk



What we know: Brownian motion

• The result of Chacon, Jan, Perkins, and Taylor(1981) proves that Brownianmotion has a single measure zero set outside which quadratic variation alongany sequence of Lebesgue partitions with vanishing mesh is equal to t.

• Unlike in Dudley’s result, there is no condition on the decay of meshes ofpartitions and the null set is uniform over all (uniform) Lebesgue partitions.
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fractional Brownian motion analogue

The quantity Vs,t(L, w) measures the (1/H)-th variation along a Lebesguepartition defined by L on the interval [s, t].

Theorem (Fractional analogue of Chacon et al. (D-L-M-P 2023))

Let H < 1/2 and let cH be a constant. Then, there exists a measurable set
ΩH ⊆ C([0, ∞);R) with the following property.
• P(BH ∈ ΩH) = 1.
• For every w ∈ ΩH and T ∈ (0, ∞), we have

lim
ϵ→0,ϵ>0

sup
L:|L|≤ϵ,

t≤T

|V0,t(L, w) − cHt| = 0.
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A non-intuitive Conjecture
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Figure: 1/H-th variation of fBM. H = 0.4, 0.6, 0.5 respectively.
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Horizontally rough
We denote by Ks,t(ϵ, w) the number of ϵ-level crossings in the interval [s, t]

Definition (Horizontally rough: an invariance notion for p-th var)
A function x ∈ C0([0, T ],R) is called horizontally rough if for any t ∈ [0, T ], ρ ∈ Rand ϵ = {ϵn} with ϵn ↓ 0,

lim
n→∞

K0,t(ϵn, x + ρ)
K0,t(ϵn, x) = 1.

Example
• From the definition, any linear function is horizontally rough.
• Using results from Chacon et al.(1981) one can show that Brownian motionand more generally continuous semimartingales are horizontally roughalmost surely.
• Our result shows that fractional Brownian motion with Hurst index H < 1/2is horizontally rough almost surely.
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