Higher Order Time Discretization For The Stochastic Semilinear Wave Equation

With Andreas Prohl (Tübingen) and Xiaobing Feng (Tennessee) *

Akash Ashirbad Panda (Assistant Professor, IIT Bhubaneswar)

International Conference on Stochastic Calculus and Applications to Finance @ IITM

June 5, 2024

^{*}X. Feng, A. A. Panda, A. Prohl, '*Higher order discretization of the stochastic semi-linear wave equation with multiplicative noise*'. **IMA Journal of Numerical Analysis**, Vol. **44**, Issue 2 (2024).

- The Stochastic Model
- Motivation for Considering Such Model
- The Effect of Noise With Numerical Experiments
- The 3 Major Contributions
- The Numerical Scheme
- Some Computational Observations

The Stochastic Model

The Stochastic Model

- Let 𝔅 := (Ω, 𝓕, 𝑘, 𝑘) be a filtered probability space with
 𝑘 = {𝑘_t}_{0≤t≤𝑘}, and {(t)}_{t≥0} be a finite dimensional Wiener process defined on it.
- Let $D \subset \mathbb{R}^d$, for $1 \leq d \leq 3$ be a smooth bounded domain.

Let 𝔅 := (Ω, 𝓕, 𝑘, 𝑘) be a filtered probability space with
 𝑘 = {𝑘_t}_{0≤t≤𝑘}, and {(t)}_{t≥0} be a finite dimensional Wiener process defined on it.

• Let $D \subset \mathbb{R}^d$, for $1 \le d \le 3$ be a smooth bounded domain.

We investigate the **numerical approximation** of the following stochastic wave equation perturbed by multiplicative noise of Itô type:

The Stochastic Semilinear Wave Equation

$$\begin{cases}
\partial_t^2 u - \Delta u = F(u, \partial_t u) + \sigma(u, \partial_t u) & \text{in } (0, T) \times D, \\
u(0, \cdot) = u_0, \quad \partial_t u(0, \cdot) = v_0 & \text{in } D, \\
u(t, \cdot) = 0 & \text{on } \partial D, \forall t \in (0, T),
\end{cases}$$
(1)

• *u* denotes the displacement/position, $\partial_t u$ denotes the velocity;

- Let 𝔅 := (Ω, 𝓕, 𝑘, 𝑘) be a filtered probability space with
 𝑘 = {𝑘_t}_{0≤t≤𝑘}, and {(t)}_{t≥0} be a finite dimensional Wiener process defined on it.
- Let $D \subset \mathbb{R}^d$, for $1 \le d \le 3$ be a smooth bounded domain.

We investigate the **numerical approximation** of the following stochastic wave equation perturbed by multiplicative noise of Itô type:

The Stochastic Semilinear Wave Equation

$$\begin{cases}
\partial_t^2 u - \Delta u = F(u, \partial_t u) + \sigma(u, \partial_t u) & \text{in } (0, T) \times D, \\
u(0, \cdot) = u_0, \quad \partial_t u(0, \cdot) = v_0 & \text{in } D, \\
u(t, \cdot) = 0 & \text{on } \partial D, \forall t \in (0, T),
\end{cases}$$
(1)

- *u* denotes the displacement/position, $\partial_t u$ denotes the velocity;
- Here, $F(\cdot, \cdot)$ and $\sigma(\cdot, \cdot)$ are Lipschitz in both arguments;
- The initial data u_0 and v_0 are given \mathcal{F}_0 -measurable random variables.

The Problem of Interest: The Strong Approximation

Considering a numerical scheme of a stochastic equation

Considering a numerical scheme of a stochastic equation

- The strong error measures the pathwise approximation of the true solution by a numerical one.
- The weak order of convergence is concerned with the approximation of the law of the solution at a fixed time.

Considering a numerical scheme of a stochastic equation

- The strong error measures the pathwise approximation of the true solution by a numerical one.
- The weak order of convergence is concerned with the approximation of the law of the solution at a fixed time.
- We discuss the strong approximation of (1), *i.e.*,

$$\mathbb{E}\Big[\|u(n\Delta t,\cdot)-u^n\|_{\mathbb{L}^2}^2\Big] \leq C(\Delta t)^{\delta}$$

If such a bound is true, we say that the numerical scheme has strong order of convergence δ or strong rates of convergence δ.

Chow [2] (2015)

A strong variational solution to (1) exists, and is usually constructed via the reformulation of (1)₁ as a first order system by setting $v = \partial_t u$,

$$\begin{cases} du = v dt \\ dv = [\Delta u + F(u, v)] dt + \sigma(u, v) dW(t). \end{cases}$$
(2)

Chow [2] (2015)

A strong variational solution to (1) exists, and is usually constructed via the reformulation of (1)₁ as a first order system by setting $v = \partial_t u$,

$$\begin{cases} du = v dt \\ dv = [\Delta u + F(u, v)] dt + \sigma(u, v) dW(t). \end{cases}$$
(2)

Walsh [8] (2006), Sanz-Solé [7] (2006)

The first works to numerically solve (1), where (semi-)discrete scheme was constructed based on the solution concept of a mild solution.

Chow [2] (2015)

A strong variational solution to (1) exists, and is usually constructed via the reformulation of (1)₁ as a first order system by setting $v = \partial_t u$,

$$\begin{cases} du = v dt \\ dv = [\Delta u + F(u, v)] dt + \sigma(u, v) dW(t). \end{cases}$$
(2)

Walsh [8] (2006), Sanz-Solé [7] (2006)

The first works to numerically solve (1), where (semi-)discrete scheme was constructed based on the solution concept of a mild solution.

We associate the following energy functional

$$\mathcal{E}(u, \mathbf{v}) := \underbrace{\frac{1}{2} \int_{\mathcal{O}} |\nabla u(\mathbf{x})|^2 d\mathbf{x}}_{\text{Elastic Energy}} + \underbrace{\frac{1}{2} \int_{\mathcal{O}} |\mathbf{v}(\mathbf{x})|^2 d\mathbf{x}}_{\text{Kinetic Energy}}.$$
 (3)

Why Study with $F(\mathbf{u}, \mathbf{v})$ and $\sigma(\mathbf{u}, \mathbf{v})$?

Why such a system is of importance? (Dalang [4] (2009))

Why such a system is of importance? (Dalang [4] (2009))

Many biological events are related to the motion of the DNA string; for instance, an enzyme may be released.

- A DNA molecule can be viewed as a long elastic string, whose length is essentially infinitely long compared to its diameter.
- A DNA molecule floats in a fluid, so it is constantly in motion, just as a particle of pollen floating in a fluid moves according to Brownian motion.

Why such a system is of importance? (Dalang [4] (2009))

Many biological events are related to the motion of the DNA string; for instance, an enzyme may be released.

- A DNA molecule can be viewed as a long elastic string, whose length is essentially infinitely long compared to its diameter.
- A DNA molecule floats in a fluid, so it is constantly in motion, just as a particle of pollen floating in a fluid moves according to Brownian motion.
- The forces acting on the string are mainly of three kinds:
 - elastic forces, which include torsion forces,
 - **2 friction** due to viscosity of the fluid;
 - 3 random impulses due the the impacts on the string of the fluid's molecules.

The Effect of Noise

Effect of Noise - A Numerical Experiment

Example 1

Let $D = (0,1), \ T = 1, \ F \equiv 0$ in (1), and W be of the form

$$W(t, x, \omega) := \sum_{j=1}^{M} \beta_j(t, \omega) e_j(x), \qquad (4)$$

where $\{\beta_j(t,\omega); t \ge 0\}$ are mutually independent Brownian motions and $e_j(x) = \sqrt{2} \sin(j\pi x)$. Let $u_0(x) = \sin(2\pi x)$ and $v_0(x) = \sin(3\pi x)$.

Effect of Noise - A Numerical Experiment

Example 1

Let $D = (0,1), T = 1, F \equiv 0$ in (1), and W be of the form

$$W(t, x, \omega) := \sum_{j=1}^{M} \beta_j(t, \omega) e_j(x), \qquad (4)$$

where $\{\beta_j(t,\omega); t \ge 0\}$ are mutually independent Brownian motions and $e_j(x) = \sqrt{2} \sin(j\pi x)$. Let $u_0(x) = \sin(2\pi x)$ and $v_0(x) = \sin(3\pi x)$.

Effect of Noise - A Numerical Experiment

Example 2

Let $\mathcal{O}=(0,1),\ T=1,\ F\equiv 0$ in (1), and W be of the form

$$W(t, x, \omega) := \sum_{j=1}^{M} \beta_j(t, \omega) e_j(x), \qquad (5)$$

where $\{\beta_j(t,\omega); t \ge 0\}$ are mutually independent Brownian motions and $e_j(x) = \sqrt{2} \sin(j\pi x)$. Let $u_0(x) = \sin(2\pi x)$ and $v_0(x) = \sin(3\pi x)$.

Case 1, Energy Curves

Fig.-1: Case 1 : $\sigma(u, v) = 0$

 $\mathsf{Fig.-2:Case}\ 1,\ \mathsf{Energy}\ \mathsf{Curves}$

Fig.-3: Case 2 : $\sigma(u, v) = u$

Fig.-4 : Case 2, Energy Curves

Fig.-3: Case 2 : $\sigma(u, v) = u$

Fig.-4 : Case 2, Energy Curves

Fig.-5: Case 3 : $\sigma(u, v) = v$

Fig.-6 : Case 3, Energy Curves

What Happens to the Approximate Total Energy, i.e., Plots $t \mapsto \mathbb{E}_{\scriptscriptstyle MC}[\mathcal{E}(u(t), v(t))]$ Plots $t \mapsto \mathbb{E}_{\mathsf{MC}}[\mathcal{E}(u(t), v(t))]$

Plots $t \mapsto \mathbb{E}_{\mathsf{MC}}[\mathcal{E}(u(t), v(t))]$

 $t\mapsto \mathbb{E}_{\mathsf{MC}}[\mathcal{E}(\mathit{u}(t),\mathit{v}(t))],$ with $\mathsf{MC}=10^3$

 $t\mapsto \mathbb{E}_{\mathsf{MC}}[\mathcal{E}(u(t),v(t))],$ with $\mathsf{MC}=5 imes10^3$

The Highlight of The Work: 3 Important Results

We focus on the proper time discretization (which we consider to be the essential part of an overall discretization) for the SPDE:

$$\begin{cases} du = v dt \\ dv = [\Delta u + F(u, v)] dt + \sigma(u, v) dW(t). \end{cases}$$
(6)

We address the following problems:

We focus on the proper time discretization (which we consider to be the essential part of an overall discretization) for the SPDE:

$$\begin{cases} du = v dt \\ dv = [\Delta u + F(u, v)] dt + \sigma(u, v) dW(t). \end{cases}$$
(6)

We address the following problems:

Result 1:- For the Case: $F \equiv F(u, v)$ and $\sigma \equiv \sigma(u, v)$

We use an implicit method in time to approximate (6), and we obtained

 $\mathcal{O}(k^{\frac{1}{2}})$ for the temporal error

in this general case, where $\{t_n\}_{n=0}^N$ be a mesh of size $\Delta t = k > 0$ covering [0, T]. This has not been addressed in the existing literature.

The Highlight of our Work: for $\sigma \equiv \sigma(u)$, $F \equiv F(u)$

$$du = v dt$$

$$dv = [\Delta u + F(u)] dt + \sigma(u) dW(t).$$
(7)

Result 2:- For the case $\sigma \equiv \sigma(u)$, $F \equiv F(u)$

We use energy arguments to obtain

 $\mathcal{O}(k)$ for the temporal error

This coincides with the order obtained in Anton *et al.* [1] (2016) and Cohen *et al.* [3] (2016).

The Highlight of our Work: for $\sigma \equiv \sigma(u)$, $F \equiv F(u)$

$$du = v dt$$

$$dv = [\Delta u + F(u)] dt + \sigma(u) dW(t).$$
(7)

Result 2:- For the case $\sigma \equiv \sigma(u)$, $F \equiv F(u)$

We use energy arguments to obtain

 $\mathcal{O}(k)$ for the temporal error

This coincides with the order obtained in Anton *et al.* [1] (2016) and Cohen *et al.* [3] (2016).

Result 3:- For the case $\sigma \equiv \sigma(u)$, $F \equiv F(u)$

With the introduction of an additional term to our scheme, we improve it to a higher-order scheme which yields

improved convergence order $\mathcal{O}(k^{3/2})$ for approximates of u

The Numerical Scheme

Numerical Scheme

$(\widehat{\alpha},\beta)$ -scheme

Fix $\widehat{\alpha} \in \{0,1\}$ and $\beta \in [0,1/2)$. Let $\{(u^n, v^n)_{n=0,1}\}$ be given \mathcal{F}_{t_n} -measurable, $[\mathbb{H}^1_0]^2$ -valued r.v's. For every $n \ge 1$, find $[\mathbb{H}^1_0]^2$ -valued, $\mathcal{F}_{t_{n+1}}$ -measurable r.v's (u^{n+1}, v^{n+1}) such that \mathbb{P} -a.s.

Numerical Scheme

$(\widehat{\alpha},\beta)$ -scheme

Fix $\widehat{\alpha} \in \{0,1\}$ and $\beta \in [0,1/2)$. Let $\{(u^n, v^n)_{n=0,1}\}$ be given \mathcal{F}_{t_n} -measurable, $[\mathbb{H}^1_0]^2$ -valued r.v's. For every $n \ge 1$, find $[\mathbb{H}^1_0]^2$ -valued, $\mathcal{F}_{t_{n+1}}$ -measurable r.v's (u^{n+1}, v^{n+1}) such that \mathbb{P} -a.s.

$$(u^{n+1} - u^{n}, \phi) = \Delta t(v^{n+1}, \phi) \quad \forall \phi \in \mathbb{L}^{2},$$

$$(v^{n+1} - v^{n}, \psi) = -\Delta t(\nabla \widetilde{u}_{\beta}^{n, \frac{1}{2}}, \nabla \psi) + (\sigma(u^{n}, v^{n-\frac{1}{2}}) \Delta_{n}W, \psi)$$

$$+ \underbrace{\widehat{\alpha} \left(D_{u}\sigma(u^{n}, v^{n-\frac{1}{2}}) v^{n} \overline{\Delta_{n}W}, \psi \right)}_{+ \frac{\Delta t}{2} \left(3F(u^{n}, v^{n}) - F(u^{n-1}, v^{n-1}), \psi \right) \quad \forall \psi \in \mathbb{H}_{0}^{1},$$

$$(8)$$

Numerical Scheme

$(\widehat{\alpha},\beta)$ -scheme

Fix $\widehat{\alpha} \in \{0,1\}$ and $\beta \in [0,1/2)$. Let $\{(u^n, v^n)_{n=0,1}\}$ be given \mathcal{F}_{t_n} -measurable, $[\mathbb{H}^1_0]^2$ -valued r.v's. For every $n \ge 1$, find $[\mathbb{H}^1_0]^2$ -valued, $\mathcal{F}_{t_{n+1}}$ -measurable r.v's (u^{n+1}, v^{n+1}) such that \mathbb{P} -a.s.

$$(u^{n+1} - u^{n}, \phi) = \Delta t(v^{n+1}, \phi) \quad \forall \phi \in \mathbb{L}^{2},$$

$$(v^{n+1} - v^{n}, \psi) = -\Delta t(\nabla \widetilde{u}_{\beta}^{n, \frac{1}{2}}, \nabla \psi) + (\sigma(u^{n}, v^{n-\frac{1}{2}}) \Delta_{n}W, \psi)$$

$$+ \underbrace{\widehat{\alpha} \left(D_{u}\sigma(u^{n}, v^{n-\frac{1}{2}}) v^{n} \widetilde{\Delta_{n}W}, \psi \right)}_{+ \frac{\Delta t}{2} \left(3F(u^{n}, v^{n}) - F(u^{n-1}, v^{n-1}), \psi \right) \quad \forall \psi \in \mathbb{H}_{0}^{1},$$

$$(8)$$

where

$$\widetilde{u}_{\beta}^{n,\frac{1}{2}} := \frac{1 + \beta \left(\Delta t\right)^{\beta}}{2} u^{n+1} + \frac{1 - \beta \left(\Delta t\right)^{\beta}}{2} u^{n-1},$$
(10)

and

$$\Delta_n W := W(t_{n+1}) - W(t_n) \quad ext{and} \quad \mathsf{v}^{n-rac{1}{2}} := rac{1}{2}(\mathsf{v}^n + \mathsf{v}^{n-1}) \,.$$

$(\widehat{\alpha}, \beta)$ -scheme

$$(u^{n+1} - u^{n}, \phi) = \Delta t(v^{n+1}, \phi) \quad \forall \phi \in \mathbb{L}^{2},$$

$$(v^{n+1} - v^{n}, \psi) = -\Delta t(\nabla \widetilde{u}_{\beta}^{n, \frac{1}{2}}, \nabla \psi) + (\sigma(u^{n}, v^{n-\frac{1}{2}}) \Delta_{n}W, \psi)$$

$$+ \widehat{\alpha} \left(D_{u}\sigma(u^{n}, v^{n-\frac{1}{2}}) v^{n} \overline{\Delta_{n}W}, \psi \right)$$

$$+ \frac{\Delta t}{2} \left(3F(u^{n}, v^{n}) - F(u^{n-1}, v^{n-1}), \psi \right) \quad \forall \psi \in \mathbb{H}_{0}^{1},$$

$$(11)$$

where

$$\widetilde{\Delta_n W} := \int_{t_n}^{t_{n+1}} (s - t_n) \,\mathrm{d}W(s) = \int_{t_n}^{t_{n+1}} s \,\mathrm{d}W(s) - t_n \Delta_n W \,. \tag{13}$$

$(\widehat{\alpha}, \beta)$ -scheme

$$(u^{n+1} - u^n, \phi) = \Delta t(v^{n+1}, \phi) \quad \forall \phi \in \mathbb{L}^2,$$

$$(v^{n+1} - v^n, \psi) = -\Delta t(\nabla \widetilde{u}^{n, \frac{1}{2}}_{\beta}, \nabla \psi) + \left(\sigma(u^n, v^{n-\frac{1}{2}}) \Delta_n W, \psi\right)$$

$$+ \widehat{\alpha} \left(D_u \sigma(u^n, v^{n-\frac{1}{2}}) v^n \widetilde{\Delta_n W}, \psi \right)$$

$$+ \frac{\Delta t}{2} \left(3F(u^n, v^n) - F(u^{n-1}, v^{n-1}), \psi \right) \quad \forall \psi \in \mathbb{H}^1_0,$$

$$(11)$$

where

$$\widetilde{\Delta_n W} := \int_{t_n}^{t_{n+1}} (s - t_n) \,\mathrm{d}W(s) = \int_{t_n}^{t_{n+1}} s \,\mathrm{d}W(s) - t_n \Delta_n W \,. \tag{13}$$

By Itô's formula, we can rewrite $\widetilde{\Delta_n W}$ as

$$\widetilde{\Delta_n W} = \int_{t_n}^{t_{n+1}} \left[W(t_{n+1}) - W(s) \right] \mathrm{d}s = k W(t_{n+1}) - \int_{t_n}^{t_{n+1}} W(s) \,\mathrm{d}s.$$
(14)

$(\widehat{\alpha}, \beta)$ -scheme

$$(u^{n+1} - u^n, \phi) = \Delta t(v^{n+1}, \phi) \quad \forall \phi \in \mathbb{L}^2,$$

$$(v^{n+1} - v^n, \psi) = -\Delta t(\nabla \widetilde{u}^{n, \frac{1}{2}}_{\beta}, \nabla \psi) + \left(\sigma(u^n, v^{n-\frac{1}{2}}) \Delta_n W, \psi\right)$$

$$+ \widehat{\alpha} \left(D_u \sigma(u^n, v^{n-\frac{1}{2}}) v^n \widetilde{\Delta_n W}, \psi \right)$$

$$+ \frac{\Delta t}{2} \left(3F(u^n, v^n) - F(u^{n-1}, v^{n-1}), \psi \right) \quad \forall \psi \in \mathbb{H}^1_0,$$

$$(11)$$

where

$$\widetilde{\Delta_n W} := \int_{t_n}^{t_{n+1}} (s - t_n) \,\mathrm{d}W(s) = \int_{t_n}^{t_{n+1}} s \,\mathrm{d}W(s) - t_n \Delta_n W \,. \tag{13}$$

By Itô's formula, we can rewrite $\widetilde{\Delta_n W}$ as

$$\widetilde{\Delta_n W} = \int_{t_n}^{t_{n+1}} \left[W(t_{n+1}) - W(s) \right] \mathrm{d}s = k W(t_{n+1}) - \int_{t_n}^{t_{n+1}} W(s) \,\mathrm{d}s.$$
(14)

The β -term

The ' β -term' is necessary for the stability analysis, in order to handle the noise term, which is unlike any *parabolic* SPDEs.

Higher Order Scheme when $F \equiv F(u)$, $\sigma \equiv \sigma(u)$

Let's recall the notation

$$\widetilde{u}_{\beta}^{n,\frac{1}{2}} := \frac{1+\beta \, k^{\beta}}{2} u^{n+1} + \frac{1-\beta \, k^{\beta}}{2} u^{n-1} \,, \tag{15}$$

For $\beta = 0$,

$$\widetilde{u}_{\beta}^{n,\frac{1}{2}} = u^{n,\frac{1}{2}} = \frac{1}{2}(u^{n+1} + u^{n-1})$$

This is inspired by the second order time-stepping scheme of Dupont [6] (1973) for the deterministic wave equation.

Higher Order Scheme when $F \equiv F(u)$, $\sigma \equiv \sigma(u)$

Let's recall the notation

$$\widetilde{u}_{\beta}^{n,\frac{1}{2}} := \frac{1+\beta \, k^{\beta}}{2} u^{n+1} + \frac{1-\beta \, k^{\beta}}{2} u^{n-1} \,, \tag{15}$$

For $\beta = 0$,

$$\widetilde{u}_{\beta}^{n,\frac{1}{2}} = u^{n,\frac{1}{2}} = \frac{1}{2}(u^{n+1} + u^{n-1})$$

This is inspired by the second order time-stepping scheme of Dupont [6] (1973) for the deterministic wave equation.

Also, in the case when $F \equiv F(u)$, $\sigma \equiv \sigma(u)$ and $\beta = 0$, the $(\hat{\alpha}, \beta)$ -scheme simplifies to (for $n \ge 1$)

$(\widehat{\alpha}, 0)$ -scheme

$$(u^{n+1} - u^{n}, \phi) = \Delta t(v^{n+1}, \phi) \quad \forall \phi \in \mathbb{L}^{2},$$

$$(v^{n+1} - v^{n}, \psi) = -\Delta t(\nabla u^{n, \frac{1}{2}}, \nabla \psi) + (\sigma(u^{n})\Delta_{n}W, \psi)$$

$$+ \widehat{\alpha} \left(D_{u}\sigma(u^{n})v^{n} \widetilde{\Delta_{n}W}, \psi \right)$$

$$+ \frac{\Delta t}{2} \left(3F(u^{n}) - F(u^{n-1}), \psi \right) \quad \forall \psi \in \mathbb{H}_{0}^{1}.$$

$$(16)$$

Numerical Example -Comparison between the cases $\widehat{\alpha} = \mathbf{0}$ and $\widehat{\alpha} = \mathbf{1}$

Numerical Example - A Comparison

Example 3

Let
$$D = (0, 1)$$
, $T = 1$, $F \equiv 0$, $\sigma(u) = \sin(u)$ in the equation (7). Let

 $u_0(x) = \sin(2\pi x)$ and $v_0(x) = \sin(3\pi x)$,

and W as in Example 2.

Numerical Example - A Comparison

Example 3

Let
$$D = (0,1)$$
, $T = 1$, $F \equiv 0$, $\sigma(u) = \sin(u)$ in the equation (7). Let

$$u_0(x) = \sin(2\pi x)$$
 and $v_0(x) = \sin(3\pi x)$,

and W as in Example 2.

For (0,0)-scheme, i.e., $\widehat{\alpha} = \beta = 0$ in the scheme (18)-(19):

Numerical Example - A Comparison

Example 3

Let
$$D=(0,1),\ T=1,\ F\equiv 0,\ \sigma(u)=\sin(u)$$
 in the equation (7). Let

$$u_0(x) = \sin(2\pi x)$$
 and $v_0(x) = \sin(3\pi x)$,

and W as in Example 2.

For (0,0)-scheme, i.e., $\hat{\alpha} = \beta = 0$ in the scheme (18)-(19):

Figure 1: (Example 3) Temporal rates of convergence; discretization parameters: $h = 2^{-7}, \Delta t = \{2^{-3}, \dots, 2^{-6}\}, MC = 3000.$

(1,0)-scheme, i.e., $\widehat{\alpha} = 1, \ \beta = 0$

$$(u^{n+1} - u^{n}, \phi) = \Delta t(v^{n+1}, \phi) \quad \forall \phi \in \mathbb{L}^{2},$$

$$(v^{n+1} - v^{n}, \psi) = -\Delta t\left(\nabla u^{n, \frac{1}{2}}, \nabla \psi\right) + \left(\sigma(u^{n})\Delta_{n}W, \psi\right)$$

$$+ \widehat{\alpha} \left(\underline{D}_{u}\sigma(u^{n})v^{n}\widetilde{\Delta_{n}W}, \psi\right)$$

$$(19)$$

$$+ \frac{\Delta t}{2} \left(3F(u^{n}) - F(u^{n-1}), \psi\right) \quad \forall \psi \in \mathbb{H}_{0}^{1}.$$

(1,0)-scheme, i.e., $\widehat{\alpha} = 1, \beta = 0$

$$(u^{n+1} - u^{n}, \phi) = \Delta t(v^{n+1}, \phi) \quad \forall \phi \in \mathbb{L}^{2},$$

$$(v^{n+1} - v^{n}, \psi) = -\Delta t\left(\nabla u^{n, \frac{1}{2}}, \nabla \psi\right) + \left(\sigma(u^{n})\Delta_{n}W, \psi\right)$$

$$+ \widehat{\alpha} \left(\underline{D}_{u}\sigma(u^{n})v^{n}\widetilde{\Delta_{n}W}, \psi\right)$$

$$+ \frac{\Delta t}{2} \left(3F(u^{n}) - F(u^{n-1}), \psi\right) \quad \forall \psi \in \mathbb{H}_{0}^{1}.$$

$$(18)$$

Figure 2: (Example 3) Temporal rates of convergence; discretization parameters: $h = 2^{-7}, \Delta t = \{2^{-3}, \dots, 2^{-6}\}, MC = 3000.$

A Computable Approximation of $\widetilde{\Delta_n W}$

A Computable Approximation of $\widetilde{\Delta_n W}$

Recall that by Itô's formula,

$$\widetilde{\Delta_n W} = \int_{t_n}^{t_{n+1}} \left[W(t_{n+1}) - W(s) \right] \mathrm{d}s = k W(t_{n+1}) - \left| \int_{t_n}^{t_{n+1}} W(s) \, \mathrm{d}s \right|.$$

A Computable Approximation of $\Delta_n W$

Recall that by Itô's formula,

$$\widetilde{\Delta_n W} = \int_{t_n}^{t_{n+1}} \left[W(t_{n+1}) - W(s) \right] \mathrm{d}s = k W(t_{n+1}) - \left[\int_{t_n}^{t_{n+1}} W(s) \,\mathrm{d}s \right]$$

We then approximate the last term by $k^2 \sum_{\ell=1}^{k^{-1}} W(t_{n,\ell})$ to get a computable approximation of $\widetilde{\Delta_n W}$ by

$$\widehat{\Delta_n W} := k W(t_{n+1}) - k^2 \sum_{\ell=1}^{k^{-1}} W(t_{n,\ell})$$
(20)

where $\{W(t_{n,\ell})\}_{\ell=1}^{k^{-1}}$ is the piecewise affine approximation of W on $[t_n, t_{n+1}]$ on an equidistant mesh $\{t_{n,\ell}\}_{\ell=1}^{k^{-1}}$, of step size $k^2 := t_{n,\ell+1} - t_{n,\ell}$.

A Computable Approximation of $\widetilde{\Delta_n W}$

Recall that by Itô's formula,

$$\widetilde{\Delta_n W} = \int_{t_n}^{t_{n+1}} \left[W(t_{n+1}) - W(s) \right] \mathrm{d}s = k W(t_{n+1}) - \left| \int_{t_n}^{t_{n+1}} W(s) \,\mathrm{d}s \right|$$

We then approximate the last term by $k^2 \sum_{\ell=1}^{k^{-1}} W(t_{n,\ell})$ to get a computable approximation of $\widetilde{\Delta_n W}$ by

$$\widehat{\Delta_n W} := k W(t_{n+1}) - k^2 \sum_{\ell=1}^{k^{-1}} W(t_{n,\ell})$$
(20)

where $\{W(t_{n,\ell})\}_{\ell=1}^{k^{-1}}$ is the piecewise affine approximation of W on $[t_n, t_{n+1}]$ on an equidistant mesh $\{t_{n,\ell}\}_{\ell=1}^{k^{-1}}$, of step size $k^2 := t_{n,\ell+1} - t_{n,\ell}$. Now, the question is: Why such approximation, i.e., $\overline{\Delta_n W}$ is necessary?

Why $\widehat{\Delta_n W}$ is necessary?

We have

$$\mathbb{E}\left[|\widetilde{\Delta_n W}|^2\right] \leq k \int_{t_n}^{t_{n+1}} \mathbb{E}\left[|W(t_{n+1}) - W(s)|^2\right] \mathrm{d}s \leq Ck^3 \,,$$

and the identity (20) infers for q = 1, 2

$$\mathbb{E}\left[|\widehat{\Delta_n W}|^{2q}\right] \leq Ck^{2q} \mathbb{E}\left[|W(t_{n+1})|^{2q}\right] + Ck^{2q+1} \sum_{\ell=1}^{k^{-1}} \mathbb{E}\left[|W(t_{n,\ell})|^{2q}\right]$$
$$\leq Ck^{3q} + Ck^{4q} \leq Ck^{3q}.$$

Hence, the approximation of $\Delta_n W$ by $\overline{\Delta_n W}$ maintains the mean property of the former. This is the very reason to use k^2 as the step size to approximate the term.

We choose $(u^0, v^0) = (u(0), v(0))$, together with

We choose $(u^0, v^0) = (u(0), v(0))$, together with

Choice of u^1 and v^1

$$\begin{cases} u^{1} = u_{0} + k v_{0} + \frac{k^{2}}{2} \Delta u_{0} + k^{2} F(u_{0}) + (k + k^{2}) \sigma(u_{0}) \Delta_{0} W, \\ v^{1} = v_{0} + k \sigma(u_{0}) \Delta_{0} W. \end{cases}$$
(21)

We choose $(u^0, v^0) = (u(0), v(0))$, together with

Choice of u^1 and v^1

$$u^{1} = u_{0} + k v_{0} + \frac{k^{2}}{2} \Delta u_{0} + k^{2} F(u_{0}) + (k + k^{2}) \sigma(u_{0}) \Delta_{0} W,$$

$$v^{1} = v_{0} + k \sigma(u_{0}) \Delta_{0} W.$$
(21)

We also assume:

 ∂D of class C^4 , and $(u_0, v_0) \in (\mathbb{H}^1_0 \cap \mathbb{H}^4) \times (\mathbb{H}^1_0 \cap \mathbb{H}^3)$.

We choose $(u^0, v^0) = (u(0), v(0))$, together with

Choice of u^1 and v^1

$$\begin{aligned} \hat{u}^{1} &= u_{0} + k \, v_{0} + \frac{k^{2}}{2} \Delta u_{0} + k^{2} F(u_{0}) + (k + k^{2}) \, \sigma(u_{0}) \Delta_{0} W \,, \\ v^{1} &= v_{0} + k \, \sigma(u_{0}) \Delta_{0} W \,. \end{aligned}$$

$$(21)$$

We also assume:

 ∂D of class C^4 , and $(u_0, v_0) \in (\mathbb{H}^1_0 \cap \mathbb{H}^4) \times (\mathbb{H}^1_0 \cap \mathbb{H}^3)$.

The Tools for the Error Analysis

The core of the analysis is

- Hölder continuity in time of the solutions (for error analysis),
- Higher moment bounds for the solutions of the continuous problem,
- Higher moment bounds for the solutions of the discrete problem,
- Trapezoidal quadrature rule developed by Dragomir [5] (2000).

Some Interesting Computational Observations

Some Observations

Example 4

Consider $\sigma(v) = v$ and $F \equiv 0$. Fig. 3 displays convergence studies for the $(\hat{\alpha}, \beta)$ -scheme for $\hat{\alpha} = 1$ and $\beta = 1/4$: the plots (a) - (C) of \mathbb{L}^2 -errors in $u, \nabla u$ and v, respectively, confirm convergence order $\mathcal{O}(k^{1/2})$.

Figure 3: (Example 4) Rates of convergence of the $(1, \frac{1}{4})$ -scheme with $\sigma(v) = v$ and $F \equiv 0$.

Consider the following case: $\sigma(u) = u$ and $F(u, v) = \cos(u) + 2v$;

Consider the following case: $\sigma(u) = u$ and $F(u, v) = \cos(u) + 2v$;

Consider the following case: $\sigma(u, v) = \frac{u}{1+u^2} + v$ and $F(u, v) = \cos(u) + 2v$;

Consider the following case: $\sigma(u, v) = \frac{u}{1+u^2} + v$ and $F(u, v) = \cos(u) + 2v$;

Let $F \equiv 0$, and drop the assumption on $\sigma \equiv \sigma(u)$ to be Lipschitz, *i.e.*, let $\sigma(u) = \sqrt{|u|}$.

Let $F \equiv 0$, and drop the assumption on $\sigma \equiv \sigma(u)$ to be Lipschitz, *i.e.*, let $\sigma(u) = \sqrt{|u|}$.

Choice of β and required number of MC

Example 8

Let D = (0, 1), T = 0.5, $F \equiv 0$, $\sigma(v) = 5v$. For increased value of β , stabilization effect vanishes for small Δt . Thus, a smaller choice of β is preferred to have the stability of the scheme.

Choice of β and required number of MC

Example 8

Let D = (0, 1), T = 0.5, $F \equiv 0$, $\sigma(v) = 5v$. For increased value of β , stabilization effect vanishes for small Δt . Thus, a smaller choice of β is preferred to have the stability of the scheme.

Figure 4: The fig. (a) shows for $\beta = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$, that at least MC = 400, 600, 800, 1000, 1400, are needed to have a steady of the energy \mathcal{E} at time T = 0.5. The fig. (b) evidence a higher number of MC as we increase β to have a steady energy curve.

References

- R. ANTON, D. COHEN, S. LARSSON, AND X. WANG, Full Discretization of Semilinear Stochastic Wave Equations Driven by Multiplicative Noise, SIAM J. Numer. Anal. 54, No. 2: 1093–1119 (2016).
- P. CHOW, Stochastic Partial Differential Equations, *Second edition, Chapman & Hall/CRC*, New York (2015).
 - D. COHEN, AND L. QUER-SARDANYONS, *A fully discrete approximation of the one-dimensional stochastic wave equation*, IMA J. Numer. Anal., **36**: 400–420 (2016).
- R. DALANG, D. KHOSHNEVISAN, C. MUELLER, D. NUALART, AND Y. XIAO, A Minicourse on Stochastic Partial Differential Equations, Lecture Notes in Math. 1962, Springer-Verlag, Berlin (2009).
- S. S. DRAGOMIR AND S. MABIZELA, *Some error estimates in the trapezoidal quadrature rule*. Tamsui Oxf. J. Math. Sci., **16**(2): 259–272 (2000).
- T. DUPONT, L^2 -estimates for Galerkin Methods for Second Order Hyperbolic Equations. SIAM J. Numer. Anal., 10(5): 880–889 (1973).
- L. QUER-SARDANYONS, AND M. SANZ-SOLÉ, Space semi-discretisations for a stochastic wave equation, Potential Anal., $\bf 24,~303-332$ (2006).

J. B. WALSH, On numerical solutions of the stochastic wave equation, Illinois J. Math., **50**: 991–1018 (2006).

Thank you for your kind attention!